— CONEENTS —

-

@

0

INERODEGEIBN ', . ..o i veeiesii i oivsnnsnssssminsnsssenes I E

175

7]

ASSEMBLY LANGUAGE RULES 0oiuunun... 3 <<

CRAPICICHE . o s o N v s s 95 S EE RS FY 4 8

]

L e R L P S N
EabeleSTMBOLIS . & & i 455 it e iim e 6 o o o s eriomsriansonss o o o e 5
L8 001c, 1y 1S N RS L R N T S 6

ASSEMBLY LISTING AND ASSEMBLER MESSAGES 7
Definition Condition Messages 8
BRrOTINMIESSATES | . i oo D SRR s e 5 5 ¥ 5 A s e S e 4 8

ASSEMBLER DIRECTIVES 10
ENDHCTIIA o e s, b B oo & w3 1o smsronsiie 566 5 % 3 10
E@QULCUIATE) 5 i s it o el L cosmnss 0 5 5 & 3 6 & B i @ 6 & 3 8 11
ORGIOBCINIE S s i e B B s e s s B R S A 12
DEEBNAefIne bR) v o i 0m i i s e e e e e e e o 13
DEFB ’S’, DEFB "S" (definebyte)ccoovuu.n... 13
DEFEW nn’ (define Word)iiivuueesiioiennsnnsnesss 14
DEFM ’S’, DEFM "S" (define message)o.oouu.o... 14
DEES:nnd (define storage): o oot i s e e e e e IS5
SKPRNSKIPEEIINES) oo e e e e e e eesmeten e o e 16
SKPHASKID OME) - . - s e s s o e cvimimie s o s o o e e oaracaraie s o s s 16
EINIDREREA 2o L bhimmin o G0N 5 & oot v & 5 & 5 5 % % osvwe s g § 8 8 16

MESSAGCEWABEE i oiiinaisip it s o vamns s 8656 6 8 a8asd 54 17

ASM

n INTRODUCTION

The assembler translates a source file written in assembly language to generate a relocatable binary file;
the source file is one which has been generated and edited by the text editor, and the relocatable binary
file is an intermediate file between the source file and object file. It is possible to link several relocatable
files by the linker.

The assembly source file is coded in assembly language. It consists of labels, mnemonic operations
codes, assembler directives, comments and an end directive; these are arranged according to the rules of the
assembler. The source file edited by the editor is written in ASCII code. The assembler translates the
source file to generate a relocatable file and outputs messages which indicate definition conditions and
syntax errors. These messages are included in the assembly listing which is displayed on the CRT or

printed on the printer.

The following FDOS commands activate the assembler.

e ASM SAMPLE
Activates the assembler. The assembler translates source file SAMPLE.ASC and generates relocatable
file SAMPLE.RB.

e ASM SAMPLE, $LPT/L, SCRT/E
Activates the assembler. The assembler translates source file SAMPLE.ASC, generates relocatable file
SAMPLE.RB, prints the assembly listing on the printer and display only erroneous lines and external
reference lines of the CRT screen.

e ASM/N SAMPLE, $SOA /L

— Activates the assembler. The assembler translates source file SAMPLE.ASC and outputs the assembly

listing to serial output port A (§SOA), but does not generate a relocatable file since global switch/N
is specified.

e ASM SAMPLE, $SFD3; SAMLIST /L
Activates the assembler. The assembler translates source file SAMPLE.ASC, generates relocatable
file SAMPLE.RB and outputs the assembly listing in the same form as that printed on the printer to
SAMLIST.ASC on FD3 in ASCII code.

e ASM SAMPLE, $LPT/L, $4000
Activates the assembler. The assembler translates source file SAMPLE.ASC, generates relocatable
file SAMPLE.RB and prints the assembly listing on the printer with a bias of $4000 added to the
relocatable address. Relocatable file is not affected by the bias of $4000.

-

ASM-1

The assembler basically uses a 2-pass system. A pass is the process in which the assembler reads a source

file from its beginning to end. The following shows operation of the assembler with the 2-pass system.

.FDOS

Assembler

Assembler source |PASS 1
File (ASCII)

Symbol table

$

Assembler

Assembler source

PASS2
file (ASCII)

/ Symbol table

Relocatable file
(RB)

CRT screen or

During pass 1, the assembler stores label
symbols according to the assembler rules in the
symbolic label table. Label symbols help the
operator to read and understand the program
easily.

During pass 2, the assembler generates a
relocatable file with reference to the symbol
table generated during pass 1, then outputs the
assembly listing (on the CRT or printer).

The relocatable file and the assembly listing
do not occupy space in RAM, which is only
used by the symbol table. Therefore, the size
of the source file to be assembled is not limited
by the amount of RAM.

The following program list will help you understand the function of the assembler. This program is

only for reference and has no meaning.

k> 280 ASSEMBLER SA-7201 <A> PAGE 0l

01 0000 :
02 0000 ; SAMPLE LIST
03 0000 ;
04 2000 ORG 2000H
05 2000 3E33 LD A3’
06 2002 FE43 CP 43H
07 2004 FE43 CP ve?
08 2006 FEIS5 CP d-K
09 2008 22 DEFB
10 2009 27 DEFB
11 200A 43 DEFB oo
12 200B 12 DEFB d 1§
13 200C 16151211 DEFM dClHIt [V [>]<H
14 2010 1314
15 2012 7E LD A, (HL)
16 2013 7E LD AM
17 2014 :
18 2014 :
19 2014 P XYZ: EQU 10
20 2014 C32120 JP ABC+XYZ
21 2017 C30A00 ABC: JP XYZ
22 201A C31420 JP ABC-3
23 201D C30A00 JP 10
24 2020 C32A20 JP +10
25 2023 2100D0 LD HL, D000
26 2026 213930 LD HL, 12345
27 2029 212120 LD HL, ABC+XYZ
28 202C 3EOD LD A, XYZ+3
29 202E 3EFF LD A -1
30 2030 21FFFF LD HL, -1
31 2033 21FOFF LD HL, —10H
32 2036 C33520 JP -1
33 2039
34 2039 CD4A20 CALL 277
35 203C CD5420 CALL ZZZ+10
36 203F CD4B20 CALL ZZZ+XXX
37 2042 21FFFF LD HL, —-XXX
38 2045 21FEFF LD HL, —-XXX-XXX
39 2048 4920 DEFW ZZZ-XXX
40 204A 00 222Z: NOP
41 204B P XXX: EQU 1
42 204B END

>k % Z80 ASSEMBLER SA-7201 <A> PAGE 02
ABC 2017 XXX 0001 XYZ 000A ZZZ 204A

22/22/72

; M may be used in place of (HL).

; Relocatable address + EQU defined aymbol value.

; Absolute address 10
; Relative address 2AH (20H+10)
; Handled as a hexadecimal number.

; EQU defined label value + numerica data
; Negative value is converted into one’s complement.

22/22/2?

; Indicates the contents of the symbol table.

~ ASSEMBLY LANGUAGE RULES

The source program must be coded according to assembly language rules. This paragraph describes the

structure of the source program and the assembly language rules.

The assembly source program consists of the following.

Z80 instruction mnemonic codes

Label symbols
Comments

Definition directives
Assembler directives Entry directives

(Pseudo instructions) Skip directives

End directive

Comments may be used as needed by the programmer; they have no effect on execution of the program
and are not included in the relocatable file.

All assembly source programs must be ended with the assembler directive END.

Z80 instruction mnemonic codes from the body of the assembly source program. These are explained
in a separate volume. ‘

A mnemonic code consists of an op-code of up to 4 characters, separators (space, comma, etc.) and
operands.

A label symbol symbolically represents an address or data. A label symbol is either placed in the label
column and separated from the following instruction with a colon (:), or placed in an operand.

The first 6 characters of a label symbol are significant and the 7th and following characters (if used) are

— ignored. Therefore, ABCDEFG and ABCDEFH are treated as the same label symbol.

Alphanumerics are generally used for label symbols, but any characters other than those used for
separators and special symbols may be used.

Comments are written between the separator " ;" and a code; these have no influence on program
execution.

Assembler directives will be explained later in this manual. These are written in the same column as the
780 instruction mnemonic codes.

An END directive is one of the assembler directives; all assembly source programs must end with this

directive.

ASM-3

—Characters—

Characters which are used in an assembly source program are alphanumerics, sepecial symbols and other
characters. The special symbols have functional meanings. (Separators, ,[SPACE], etc.)
1) Alphabetic characters: ABCDEFGHIJKLMNOPQRSTUVWXYZ
These characters are used to represent symbols and instruction mnemonic codes. A ~ F are also used
for representing hexadecimal values. Further, D is used to indicate decimal and H is used to indicate
hexadecimal.
2)Numerics: 0123456789
These are used to represent constants and symbols. Whether a constant is a hexadecimal number or a
decimal number is determined according to the rules of constants.
3) Space
Spaces are treated as separators except when they are used in comments. They perform the tabulation
function on the assembly listing when they are placed between op-code and operand or between ope-

rand and comment as shown below:

Example: OR FOH[SPJ; A<—X0
XYZ : PUSH[SP|AF Editor list
ADD [SP] HL, BC [SP]; BC = COUNT
2
OR FOH ; A<—XO0
XYZ: PUSH AF Assembly listing
ADD HL,BC ; BC = COUNT
i t

Tab set Tab set
4)Colon " : "
A colon behaves as a separator when it is placed between a label symbol and an instruction. It performes
the tabulation function on the assembly listing.

Example: START: LD SP, START
MAIN: ENT
i) i
Tab set Tab set

An address is assigned to the label symbol even if no instruction follows. (See the prargraph on symbols.)

Example: ENTRY: «<"ENTRY "is assigned the same address as " TOPQ"".
TOPO: PUSH HL

5) Semicolon " ;"
A semicolon represents the beginning of a comment. None of the characters between a semicolon and a
code have any influence on execution of the program. The semicolon is placed at the top of a line
or the beginning of a comment column.

Example: ; :
; SAMPLE PROGRAM All lines are comments.

CMMNT: ENT ; COMMENT

N T T
Comment column

ASM-4

6) Carriage return ([CR])

A carriage return code represents the end of a line.
7) Other special symbols: + —" (),
All these are special symbols used in instructiln statements.
8) Other symbols
Other characters are not generally used, although they may be used as symbol labels or in the comment

column.

—Line—

Each line of a source program is formed of alphanumerics and symbols, and is ended with a carriage
return. Except for comments, each line includes only one of the Z80 instructions, an assembler directive,
an end statement or an empty statement for a skip.

Components on each line are arranged according to the tab settings when it is listed. (See the assembly

listing on page 7.)

—Label Symbols—

All characters other than special symbols may be used for label symbols, but generally alphanumerics
are used. Each label symbol can consist of up to 6 characters; the 7th and following characters, if used, are

ignored by the assembler.

Example: Correct ABC START BUFFER 50STEP
Incorrect (ABC) ,HL IY+3 XYZ+3 < Special characters are used.
COMPAREQ

f i ""COMPAR".
COMPARE1 :‘ The following label are treated as the same label symbol " COMPAR

Assembler directive EQU defines data (1 byte or 2 bytes) for a label symbol and assigns it to the label.

Example: ABC: EQU 3
CR: EQU ODH
VRAMO: EQU DO0OH

Assembler directive ENT defines a label symbol as a global symbol. A colon (:) placed between a
label symbol and a following instruction defines the label symbol as a relocatable instruction address.

Example: RLDR: ENT
RLDRO: PUSH: - HL

When a label symbol is referenced (that is, when it is used as an operand), the assembler first searches
the symbol table for the specified label symbol; if it is not found, the assembler treats it as hexadecimal
data. For example, when CALL ABC is encountered, the assembler searches the symbol table for ABC;
if it is not found, the assembler treats it as OABCH and calls address OABC.

A label symbol used as an operand must be defined in the assembly source program unit in which it is
used, or must be defined as a global symbol in another assembly source program unit. Otherwise, it is
converted into binary and left undefined.

A label symbol which has once been defined cannot be defined again.

ASM-5

Multiple label symbols may be defined as relocatable instruction addresses as follows.

Example: . ABCD: B Label symbols ABCD, EFGH and TUK are all defined
EFGH: ENT as relocatable addresses of LD A, B. ABCD and EFGH
K LD A.B are also defined as global symbols.
ABCD:
EFGH: Same as the above, except that ABCD and EFGH are not
’ global symbols.
JK: LD A,B
—Constants—

There are two types of constants: decimal and hexadecimal. + and — signs can be attached to these.
A character string which is defined as a label symbol is treated as a label symbol even if it satisfies the
requirements for a constant.

The assembler treats a constant as a decimal constant when it consists of numerics only or it consists

of numerics followed by D.

Example: 23 999 +3 —62 16D 0003D
16 3

The assembler treats a constant as a hexadecimal constant when it consists of 0~9, A, B,C,D,E and
/ or F followed by H.

Example: 2AH CDH +01H —BH O0010H O00ADH O0O0H

A constant used in the operand of a JP, JR, DIJNZ or CALL instruction represents an absolute address
when it has no sign and a location relative to the current address when it has a sign. In other cases, con-
stants without signs and those with a + sign represent numerics, while those with a, — sign are converted

into two’s complement.

ASM-6

ASSEMBLY LISTING AND ASSEMBLER MESSAGES

The assembly listing is output to the CRT screen or printer when an FDOS system command ASM is
executed with SCRT/ L or $LPT /L specified as an argument. Examining the assembly listing is one of
the most important procedures in assembly programming since this is when a check is made for errors in
the source program.

The assembler translates the specified soutce program and outputs the assembly listing, which includes
line numbers, relative addresses, relocatable binary codes, assembler messages and the source program list
(including label symbols, Z80 instruction mnemonic codes and comments). The assembly listing is pages
every 60 lines.

The comment column is displayed when the number of characters per line is set to 80, but is not dis-
played when it is set to 40.

The assembly listing format is shown below. Tabs are set at the beginnings of labels, op-codes, operands

and comment columns.

Relative Assembler

address message
Line l Relocatable
number binary code Label Op-code Operand Comment
[Y P e ablol sl 4 il | I

Z80 ASSEMBLER SA-7201 <A> PAGE 01 ??/??/?? "] This message is output at the top of each page.
01 0000 :
02 0000 ; ASSEMBLER LIST SAMPLE
03 0000 :
04 0000 P LETNL: EQU 0006H
05 0000 P MSG: EQU 0015H
06 0000 ;
07 0000 START: ENT ; ENTRY FROM UNIT#1
08 0000 MAIN: ENT ; ENTRY FROM UNIT#2
09 0000 310000 LD SP, START ; INITIAL STACK POINTER
10 0003 210000 E LD HL, TEMPOQ
11 0006 DD210000 E LD IX, TEMP1
12 000A DD360000 EE MAINO: LD (IX+CONSTO0), CONST1
13 000E 00 Q XOA A ; A<--00
47 005A 1A MAIN7: LD A, (DE)
48 005B B7 OR A
49 005C 2000 Vv JR NZ, COMP
50 OO5E EB MAINS8: EX DE, HL ; EXCHANGE DE, HL
Z80 ASSEMBLER SA-7201 <A> PAGE 02 ?7/?2/??] A new page is started when the number of lines
on the preceding page reaches 60.

ASM-7

Errors detected during assembly and definition conditions are indicated with assembler messages.

—Definition Condition Messages—

E (External)

This message indicates that an external symbol reference is being made; i.e., the label symbol by the
operand is not defined in the assembly source program unit assembled.

The label symbol indicated must be defined as a global symbol in another assembly program unit for
linkage with the current unit by the linker. (See "Assembler Directive ENT" on page 10.)

An undefined byte of data is treated as "00"; 2 undefined bytes of data (or an address) are uncertain.

Example: E LD B, CONSTO
The byte of data ""CONSTO" is not defined in the program unit.
E CALL SORT
Address SORT is not defined in the program unit.
EE "™ BIT TOP, (IY+FLAG)
LT: The byte of data" FLAG" is not defined in the program unit. —

The byte of data' TOP" is not defined in the program unit.

P (Phase)

This message indicates that the label symbol is defined by an EQU statement with a constant value
assigned. A label symbol indicated by this message can be referenced from an external file. In this case,
however, the program unit including the EQU statement must be loaded before the other program units
which are to be linked with it.

The P message is displayed when a label symbol different from those stored in the symbol table during
PASS 1 is found.

Example: P LETNL: EQU 0762H
P DATAL: EQU 3
Indicates that LETNL and DATA1 are defined by EQU.

The P message is displayed in the relocatable binary code column rather than in the assembler
message column.

—Error Messages—

C (illegal Character error)

This message indicates that an illegal character has been used as an operand.
Example: C JP +1000-3

F (Format error)

This message indicates that the instruction format is incorrect.

N (Non label error)

This message indicates that ENT or EQU has no label symbol.
Example: N EQU 0012H
S

No label symbol

ASM-8

L (erroneous Label error)

This message indicates that an illegal label symbol is used.

Example: L FR: XY 7

XYZ is not defined in the current source program.
No externally defined global symbol can be used as an operand of the JR or DJNZ commands.
The L message is displayed if such a label symbol is specified.

M (Multiple label error)

This message indicates that a label symbol is defined two or more times.

Example: M ABC: LD DE, BUFFER
2
M ABC: ENT
Indicates that ABC is defined more than once.

O (erroneous Operand)

This message indicates that an illegal operand has been specified.

Q (Questionable mnemonic)
This message indicates that a mnemonic code is incorrect.
Example: Q CAL XY Z
CALL XYZ is correct.
Q PSHB
PUSH BC is correct.

S (String error)

This message indicates that single quotation mark(s) are omitted from a DEFM statement.
Example: S DEFM GAME OVER
DEFM °‘GAME OVER’ is correct.

V (Value over)

This message indicates that the value of the operand is out of the prescribed range.

Example: V LD A, FF8H
Ve ISET 8 A
\'% JR —-130

ASM-9

_ ASSEMBLER DIRECTIVES

Assembler directives (also sometimes referred to as 'pseudo instructions') control assembly, but are

not converted into machine language. However, in the DEFB, DEFW and DEFM directives, their operands

are sometimes converted into machine language.

—ENT (entry)—

This assembler directive defines a label symbol as a global symbol. Label symbols which are referenced
by two or more programs when multiple programs are linked must be defined by the entry directive.
Label symbols defined by the entry directive are included in the relocatable file so that the linker can

identify them The symbolic debugger can performs symbolic addressing using these label symbols.

Label symbols which are not defined by the entry directive contribute only to assembly of the current
source program unit, and are not included in the relocatable file output by the assembler. However, labels
defined by the EQU directive are exceptions since they are defined as global symbols and entry definition
is not necessary.

The example below shows label symbols being referenced between program units GAUSS-MAIN and
GAUSS-SR. The E message in the assembler message column indicates that a label symbol which is not

defined in the current program unit is being referenced externally.

; GAUSS-MAIN
MAINO: ENT < Entry definition of label symbol
Address undefined MAINO
CD0000 E CALL CMPLX
Program unit 1 E message :
GAUSS-MAIN CALL CMPLX+2 < No offset can be added to a label symbol
which is defined externally.
END < END is always required at the end of a
program unit.
; GAUSS-SR
CMPLX: ENT < Entry definition of label symbol
: CMPLX
Program unit 2 RET
"GAUSS-SR" Address undefined :
C30000 E Jp MAINO
E message :
END

ASM-10

—EQU (equate)—

This assembler directive defines a label symbol with a numeric value (or address) assigned. The numeric
value must be a decimal or hexadecimal constant. Any numeric value can be added to or subtracted from a

label ymbol once it is defined with a numeric value assigned; this allows a new label symbol to be defined.

The label symbol used as an address in the operand is generally treated as a relative address. However,

when a specific address is assigned to the label symbol with an EQU directive, the address is not changed

during assembly.

The EQU directive also defines a label symbol as a global symbol. A label defined by the EQU directive
can be referenced by an external program unit. However, program units including such directives must be

loaded before other program units to be linked.

The following example illustrates use of the EQU directive to define label symbols as monitor sub-
routine addresses and 1/0 port numbers for a specific device. The P messages indicate that the EQU

directives define the label symbols as global symbols.

>k Z80 ASSEMBLER SA-7201 <A> PAGE 01 ?2/22/??

01 0000 ;

02 0000 ; MONITOR SUBROUTINE

03 0000 :

04 0000 P BRKEY: EQU O001EH

05 0000 P GETKY: EQU 001BH

06 0000 P PRNTS: EQU 000CH

07 0000 P PRNT: EQU 0012H

08 0000 P MSG: EQU 0015H

09 0000 P NL: EQU 0009H

10 0000 P LETNL: EQU 0006H

11 0000 P GETL: EQU 0003H

12 0000 SKP 3

16 0000 :

17 0000 ; SET PORT#: PRINTER

18 0000 -

19 0000 P POTFE: EQU FEH

20 0000 P POTFF: EQU POTFE+1 ; POTFF is defined with FF (hexadecimal)

21 0000 : assigned.

22 0000 P CON1: EQU ik

23 0000 P CON2: EQU 2

24 0000 P CON3: EQU CON1+CON2 ; This results in assigned of 3 to CON 3. In this
case, CON1 and CON2 must be defined in
advance.

ASM-11

—ORG (origin)—

This assembler directive determines the object program loading address. For example, when

ORG 2000H

is placed at the beginning of the program to be assembled, the assembler assembles the program with a
loading address of 2000H specified.

When a relocatable binary file generated with the loading address specified with the ORG directive is

linked with other programs by the linker, the loading address specified with the ORG directive is effective

and that specified with the linker is not.

When relocatable files with loading addresses specified with ORG directives are linked, or when more

than one ORG directives is used in a program, the loading addresses specified must not overlap and must

appear in the sequential order. ’

When a relocatable file with a loading address specified with an ORG assembler directive is converted

into a system file using the LINK /S command, the specified loading address is ignored.

01
02
03

05

07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

55
56
57
58

XK

0000
0000
2000
2000
2000
2003
2006
2007
200A
200D
200E
2010
2012
2013
2014
2017
2018
201A
201B
201C
201E
201F
2021

2062
2063
2064
20E4

XK

JTYPE
TYPE20 2048 TYPEER 2058

780 ASSEMBLER SA-7201 <ORG> PAGE 01 22/22/22

: TYPE COMMAND

ORG 2000H

TYPE: ENT
116220 LD DE,SWTBL ; DE:=SWITCH TABLE
CD0000 E CALL ?GSW ; CHECK GLOBAL SWITCH
D8 RET € ;
CD0000 E CALL C&Lf : SELECT CRT OR LPT
CDO000 E CALL ?SEP ; CHECK SEPARATOR
D8 RET C
FE2C cp 2CH : SEPARATOR =", " ?
3E03 LD A3 : 31S ERR CODE
57 SCF
co RET NZ : NO, ERR RETURN
CD0000 E TYPEO: CALL ?LSW ; CHECK LOCAL SWITCH
D8 REC C
3E08 LD A8 ; 8IS ERR CODE
37 SCF
co RET NZ ; ERROR, LSW EXIST
0E80 LD C,128 ; LU# =128
D9 EXX
0604 LD B, 4 ; DEFAULT MODE = ASC
D9 EXX
88 SWTBL: DEFB 88H ;P
FF DEFB FFH ; END OF SWTBL

BUFFER: DEFS 128 ; 128 BYTE BUFFER

END

780 ASSEMBLER SA-7021 <ORG> PAGE 02 22/22/2

2000 BUFFER 2064 SWTBL 2062 TYPEO 2014 TYPELIO 203C

ASM-12

—DEFB n (define byte)—

This directive sets constant n (1 byte) in the address of the line on which the directive is specified. A

label symbol defined with a constant (1 byte) assigned may be used in place of n.

This directive (as well as DEFW and DWFM) is used to form message data or a graphic data group for a

code conversion table or other table.

The following example forms the message "ERROR" in ASCII code Since it uses ODH as an end mark,

monitor subroutine 06B3H can be used to output the message.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

1FF3
1FF4
LER7
1FFA
1FFD
2000
2000
2000
2000
2000
2000
2001
2002
2003
2004
2005

B7

CAO0000 E
110020
CD1500
C30000 E
P

45
52
52
4F
52
0D

MSG:

; MESSAGE GROUP

?

MESGO:

OR
JP
LD
CALL
JP
EQU

ENT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

A
Z, READY
DE, MESGO
MSG
MAIN2
06B5H

;""ERROR"
45H
52H
52H
4FH
52H
ODH

—DEFB ’S’, DEFB "S" (define byte)—

This directive sets the ASCII code corresponding to the character enclosed in single or double quota-

tion marks in the address of the line on which the directive is specified.

Since this directive converts characters to ASCII code, the above example can be rewritten as follows.

21
22
23
24
25
26
27
28
29
30
31
32

2000
2000
2001

2002
2003

2004
2005
2006
2007
2008
2009
200A

45
52
52
4F
52
0D
16
13
0D
27
22

MESGO:

ENT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

;""ERROR"

TR

'R’

'R’

ok

!R’

ODH

:’

rl

ODH

"oy

00

ASM-13

—DEFW nn’ (define word)—

This directive sets n’ in the address of the line on which the directive is specified and n in the following

address; in other words, it sets two bytes of data. A label symbol may be used in place of nn’.

39 I 5PFF CMDT: ENT ; COMMAND TABLE
40 5FF1 41 DEFB 41H

41 5FF2 0053 DEFW CMDA
42 S5FF4 42 DEFB 42H

43 5FF5 1ES53 DEFW CMDB+3
44 SFF7 53 DEFB 53H

45 S5FF8 0000 E DEFW CMDS
46 SFFA 0D DEFB ODH

47 SFFB CONSTO: ENT

48 S5FFB O0FO01 DEFW Ol0FH
49 5FFD CONST1: ENT

50 S5FFD 660D DEFW OD66H

—DEFM ’S’, DEFM "S" (define message)—

This directive sets the character string enclosed in single or double quotation marks- in ASCII code in
addresses starting at that of the line on which the directive is specified. The number of characters must

be within the range from 1 to 64. On the assembly listing, codes for 4 characters are output on each line.

The example on the preceding page can be written as follows with this directive.

21 2000 MESGO: ENT ; "ERROR"
22 2000 4552524F DEFM 'ERROR’

23 2004 52

24 2005 OD DEFB ODH

25 2006 16134142 DEFM '’ AB’

26 200A OD DEFB ODH

27 200B 41274247 DEFM "A'B'C"

28 200F 4327

29 2011 OD DEFB ODH

ASM-14

—DEFS nn’ (define storage)—

This directive reserves nn’ bytes of memory area starting at the address of the line on which the direc-

tive is specified.

This directive adds nn’ to the reference counter contents; the contents of addresses skipped are not
defined.

The following example reserves buffer areas.

02 4BB8 TEMPO: ENT : BUFFER A
03 4BB8 DEFS 1

04 4BB9 TEMP1: ENT ; BUFFER B
05 4BB9 DEFS 2

06 4BBB TEMP2: ENT ; BUFFER C
07 4BBB DEFS 2

08 4BBD TEMP3: ENT ; BUFFER D
09 4BBD DEFS 128

10 4C3D BFFR: ENT : BUFFER E
11 4C3D DEFS A

12 4c47 BUFFER: ENT : BUFFER F
13 4C47 ’ DEFS 2

The addresses are increased by amounts corresponding to the values indicated by the respective DEFS statements.

ASM-15

—SKP n (skip n lines)—

This directive advances the assembly listing by n lines to make the list easy to read.

30 COMMON: ENT ; NORMAL RETURN
31 3BB8 AF XOR A ; A<- -00

32 3BB9 32B84B LD (TEMPO), A ; CLEAR CMD BUFFER
33 3BBC 110020 LD DE, MESGO ; "READY"

34 3BBF C9 RET

35 3BCO SKP 3

3 line feeds are made.

39 3BCO ;

40 3BCO ; ABNORMAL RETURN

41 3BCO :

42 3BCO ABNRET: ENT ; SET INVALID MODE

—SKP H (skip home)—

This directive advances the page during output of the assembly listing.

—END (end)—

This directive declares the end of the source program. All source programs must be ended with this

directive. Assembly operation is not completed if this directive is omitted.
The assembly outputs
END?

when it reads a source file which doesn’t include an END directive.

ASM-16

8 MESSAGE TABLE

Definition status message

Meaning

Example

E (External)

Indicates that a label symbol is being
referenced externally; that is, the label
is not defined in the current source
program unit.

E LD B,CONSTO
L The data byte ""CONSTO" is undefined.
E CALL SORT
L The address "SORT " is undefined.
EE BIT TOP, (IY+FLAG)
L The data byte "FLAG" is undefined.
The data byte "TOP" is undefined.

Defines a label symbol with a constant
assigned.
This message is also output when a

P LETNL : EQU 0762H
P DATA1: EQU 3
LETNL and DATAI are defined by EQU.

L (erroneous Label

is used.

E Q) label symbol is encountered during The P message is displayed in the relocatable
pass 2 which was not encountered binary code column rather than in the assembler
during pass 1. message column.

Error message Meaning Example
: ¢ : ; 4

C (illegal Character Indlc?tes that an illegal character is c P +1000—3

error) used in the operand.
Indicates that the instruction format

F (Format error) S
is incorrect.

Indicates that no label symbol is N EQU O0012H

N el gron) specified for ENT or EQU. No label symbol
Indicates that an illegal label symbol L JR XYZ

XYZ is not defined in the current program.
No externally defined global symbol can be

error) used as the operand of a JR or DJNZ command.
If such a label symbol is specified, the L message
is displayed.
Indicates that a label symbol is defined M ABC: LD DE, BUFFER
> M (Multiple label two or more times. l
error) M ABC:ENT

L ABC is defined twice.

O (erroneous
Operand)

Indicates that an illegal operand is
specified.

Q (Qestionable

Indicates that the mnemonic code is

Q CAL XYZ

(Value over)

Indicates that the value of the operand
is out of the prescribed range.

mnemonic) incorrect. CALL XYZ is correct.
S Indicates that single or double quota- S DEFM GAME OVER

(String error) tion mark(s) are omitted. DEFM *GAME OVER'’ is correct.
v

V 1D A FF8H V
vV JR -130

SET 8, A

END?

Indicates that the END directive is
missing from the source program.

Note: Refer to the System Error Messages in the System Command manual for other system errors.

ASM-17

suoter et i bewsiquh a

s u.di vﬁmmxs lmmm
Somwon Jnavue ol ar boafieb doh #

St oy

¥ .v-.{igmx&; &

o & dviw Todiys Jedel s sonBe(
e
stk mq&w vels o posrsen aidY
b bawtouosss w loden fadal
Bowtmuosns fonasw duidw Casy |
¥ uﬁqaﬂtﬁ:ﬁ

- iagﬁfx o mmﬁ;

00 e "mam Vot

2 9} nebsnlied

'm ot iaasin PR asmﬁmi
M i

bm # ‘rv{rmm Wl‘flﬂ % mtz &‘&Mb‘ﬁ
LGN SO Ta Wl

' m%n wfa s m }M&M
wu Wh'mmq am ?a ma&v

