BEFORE USING
THE BASIC COMPILER

>

<>

9

The BASIC compiler operates under control of FDOS. All diskettes used with FDOS
and the BASIC compiler must be formatted (initialized) by the FDOS. Diskettes
formatted by Disk BASIC SA-6000 series cannot be used with FDOS and vice versa

since the diskette contents may be destroyed.

Never replace a diskette which has been opened with another one unless CLOSE or

KILL is executed: otherwise, contents of the new diskette may be destroyed.

BASIC-i

S
&
=

=

O
(&)
=
9p)
<t
(aa]

—Guide for Reading this Manual—

(_ START)

Have you used any of the SA-5000

series cassette BASIC interpreters?

Read the System Command Manual.

L =

Do you want to store data on the yes

\

Read the instruction Manual for the SA-5000 series.
Use one of the SA-5000 series or SA-6510 for practice.

e BRI

START

diskette using the BASIC compiler?

(s

Read pages 3 through 18 of this manual.

|

L Read pages 1, 2 and 23 through 35 of this manual.]

Do you want to link your program yes

with assembly subroutines?

no

¥

Read pages 19 through 21 of this manual.

Read the Text Editor, Z-80 Assembler, Linker
and Symbolic Debugger manuals.

Read the paragraph describing the plotter control
application example in the Programming Utility
manual.

no

Does the assembly subroutine use
FDOS or library subroutines?

Read the Library/Package Manual.

5 |

editor

Which system prm Text

generate your program?

SA-5000 series
or SA-6510

Text editor

Which system program is used to
correct you program?

SA-5000 series
or SA-6510

L

Read the Text Editor Manual.

Which system program is used to

Symbolic debugger

debug your prong?’______——/
SA-5000 series

SNy,

|

Read the Symbolic Debugger Manual.

]

or SA-6510
(. Enp)

BASIC-ii

—— CONEENTS —

OUIREINE = ic 0 v i i B o e Ghebupisrmanit s Subpat ol 1
SEQUENRIAESBIEE " * - o e . s o s s 3
WO REN s h Rl ename . i . L e e ol . g e e 5
121 2 N[Eesmienc oy ey R A . A L R e 5
QUIE nsidiatatcl e, o s v s ORI T L L i p s b s b b s e 5
CLOSE #n (Corresponding to WOPEN) 5
IGTIE T g s s o e L il o oy L b A SRR O SO S
ROBEN#n. “flename?™ . .« ogiiihe o o o o o o s wwmmas o 5 5 5 5 s 6
| B] [S heAvE T P o] (RNt NN seca- . 6
NP vamable . oo o oe o IR L & - & v s b e B S § 6 S 6 e 6
CLOSE #n (Corresponding to ROPEN) 6
ANZA L 1) et DRI R R B e S e o 6
Rl N A e B ST A s s s e s 4 s 5 55 sbueeesisi G 5 § 5 5 B himmione 7
EileMode te st s R T e 6 % € 5 o o - feeensein 7
Locatingsthe FileiEnd s & s S e u s s n e s s b as st ohdon s 8
RANBOMGEILE' o i Gt e o v v e v ommomemenninl Sonerstiol o batandtind 9
XOBEN #n; "filename'" oliin oo s nn vnmmmon oy ebomnd 12
PRINT:#ni(eXxpression), data. i il cv oot v v v eioieere oio e wrbibest S 12
INPUE #n;(expression); vatiableiss to o« o « « o mismas o st ot 13
CEOSEL Sl i o e a B | L st MRS YR 13
Using E@OEGEN): =cmno o v s sibiiiieoe % g R o e v n el 13
EXCEPTION PROCESSING CONTROL 14
ONAERRORNGOTO: linenumberlisc. . .. i cnwsmmas oo s 555 5 uens 14
| S RINT 12 R B e S R B0 | A - 14
RIESIINIEE S & s s 5 5 et bn e £ £ 5 5 5 % AR B 5 % 5 8 b g 14
OFESERRGOR 00 o T VTSRS L L st s s 5 e b e 14
ON'BRKEY {GOTO Nenumbers oo « .« i 2 cvvvcviciess st ime 14
OREESRRIEENG = 0 N L L e e s s e 14
ONEKEN GOTOlinenumberaic ilot 14
ON KEY GOSUB linenumberccvvuuuueeunn.. 15
ORE KNG s o Bl o v s sl A PRGN Sy 15
FDOSCOMMANIS & . @ et eeee e ssas seaes 16
BRilt-in COMIANGS . 50 & o s o SR e o s o 06 6 s e sreisiss e s 8 58 e 6 s 16
Transien@eommands i s Sae T e e e e 1
Changing:the Defanlt Drive . PESaA . Lk 5 T, w128 a8 17
RungStatementers . wie ob S BT L e s e e e 18

BASIC-iii

Extesnal Function Definition: . (gdit . o0 i, bl s pulinn s 19
Calling External Functions s - vo 8 bl o0 Lk s s i i 19
External Command Definition . iubiiii o b il 19
Callifig Bxternal Comimand.0y o 08, e el 19
Coding External Functions ... ot o s s i oo 19
Coding External Commands ... oiiesno o0 o 0= uliaie e i 20
Linking External Functions and Commands
Wilh BASIC Programs.. . « sxibtbt i i it s s e s 21
SAMPLE: PROGRAM.. . .« « 5+ ws subies s vtk b s o ivnne i irion eSO I Y 22
BASIC COMPILER STATEMENT LISToiiei b v 23
FDOS commands (For details, refer to
the System Commiand Manualilisbe = o o 000 =il e 23
Sequential file control statememlS vl o, 0, 0 S N e 23
Random file control statements tae ... oo e bt L o 24
Exception processing statemientsie st i o0 g Ll 24
Assigntent statement 0l vl ek R R 25
Inpubiand Output statements .. 8L i, v b e e 25
Loopistatement: . wvwve s (3 s SEAREAEN S weini won e SRR T SRS 26
Branchistatements ... 88 BEmn vy | IR eSSl Al s 27
Definition'statements ;o « « v 5 4 Sh o SR AIBINSIRT) ofte § L | 2
Comment statement and control statements 28
Musicicontrol statements 8tsins s ony s vngns s BB SRR 28
Graphic control statements. . . vislitinsn oo b oLy vy AR R ey 29
Machine language program control statements 29
Prifiter’ control StAtEmentsol e oo 29
PRSI N ——— R N O s N 30
ATIRHEHCTONCHONS . v s B oo 05§l e L G 30
SHENE COMMEO] TUNCHONS «ov ol it i o et o 31
Tabulation fUunetionsoewsen B G L oo it o 39
ATHIMOLIC OPETATONS i« iune VTR AL wisds v S b e 32
EogicadlOperatons . . . o' worewss 4 olilis oo soene: 5 sl SIS o AN 39
Other SYMIBOIS i 5c i a5 tamnee it iR Lo oSul L E IS Ol & 23
BERROR MESSAGES........oovaiiintdoibassmessetes s Saat gy 34
Error Messages Issued During Compalilg i sr iy e 34

Error Messages Issued During Program Execution (BASIC Level) 34
Error Messages Issued During Program Execution (FDOS Level) 34

COMPARISON WITH D-BASIC SA-6510 35

BASIC-iv

The BASIC compiler translates a BASIC program into Z80 machine language. Use the following pro-
cedures to run a BASIC program with the BASIC compiler.
1. Generate a Source Program with Either of the Following Methods

a. Using the text editor (Refer to the Text Editor Manual.)

b. Using the BASIC interpreter and the CONVERT command (Refer to the explanation of CONVERT.

in the System Command Manual.)

2. Compile the Source Program

Example 1) 2 > BASIC M <J (< indicates a carriage return.)

L Filename

Compiles source program PROG1 . ASC to generate relocatable file PROGI1 . RB.
Example 2) 2> BASIC PROGI1. PROGIA/O
Compiles source program PROG1 . ASC to generate relocatable file PROGI1A . RB.
Example 3) 2> BASIC/C PROGI1 v
Compiles PROG1 . ASC to generate PROG1 . RB with the list displayed on $CRT.
Example 4) 2> BASIC/P PROGI
Compiles PROG1 . ASC to generate PROG1 . RB with the list output to SLPT.
Example 5) 2> BASIC/P/N PROGI <
Outputs the list to SLPT but does not generate a relocatable file.
3. Link
Link the relocatable file generated in step 2 with RELO . LIB (the relocatable library which includes
subroutines for arithmetic operations, SIN and COS functions, etc.). RELO . LIB is linked automatically.
Example 6) 2> LINK PROGI1 <
Links relocatable file PROGI1 . RB with RELO, LIB in $FD1 to generate object file
PROG]1 . OBJ.
Example 7) 2> LINK/P PROGI1Y
The same as example 6 except that the link information is printed on $LPT.
4. Execute the Object Program
Example 8) 2> RUN PROGI1
Loads PROG1 . OBJ and executes it.
As described above, many steps are required for the compiler to generate, correct and execute a pro-
gram, but the process has the following advantages.
1. Fast execution time
2. FDOS instructions can be executed.
3. Programs generated by the assembler can be easily linked.
4. Statements can be extended.

Note: Sometimes source files exceeding 15K bytes cannot be compiled.

BASIC-1

5. Compilation and Execution of Long Program
It may occur that compilation or linking cannot be performed because of insufficient memory capacity

when a long program is to be compiled and executed.

a. Requirement for compilation
The maximum length of a source program which the BASIC compiler can handle is about 10K—15K
bytes. If the source program is too long, its length must be reduced or it must be divided into several
short sections.

b. Requirement for linking
The standard linker can handle a BASIC source program the length of which is up to about 10K bytes
and the resultant object program of which is about 23K bytes long. If the length exceeds the above
values, special linker MLINK is used. This linker can handle a BASIC source program the length of
which is up to about 15K bytes and the resultatnt object program of which is about 33K bytes long.

6. Program Debug
A BASIC source file is converted into a relocatable file with the BASIC compiler then into an object
file with the linker. The source program does not exist in memory when the object program is executed.
With the BASIC interpreter, the value of variables can be changed or the program can be corrected
during execution by interrupting and restarting it. This is impossible with the BASIC compiler. The source

program must be corrected, then it must be compiled, linked and executed.

There are three methods for debugging the source program.

a. Generating and debugging a program with the BASIC interpreter, then compiling the debugged
program. (This method is the easiest but it does not allow use of statements which are unique to the
BASIC compiler.)

b. Inserting PRINT statements in appropriate positions in a program to display data required for
debugging.

c. Using the FDOS symbolic debugger.

(This method is effective when debugging programs which are linked with assembly subroutines.)

BASIC-2

SEQUENTIAL FILE

A file is a set of related records which are treated as a unit. The FDOS has a file directory which con-
trols access to files; a file cannot be accessed unless its name is stored in the file directory.

Cassette tape files are necessarily sequential files. To read the 100th record in a cassette tape file, the
preceding 99 records must be skipped.

On the other hand, floppy disk files are usually random files, although sequential files can also be stored
on a floppy disk. Assume an address list in which names are written at random. To find specified name,
a search must be made from the beginning of the address list. Such a file is a sequential file.

The advantages and disadvantages of sequential files are as follows.

Advantages: ® A diskette can be used effectively because there exist no empty records in a file.
@ They are effective when the entire contents of a file must be processed; that is,

when no search operation is necessary.
Disadvantages: @ It takes a time to find a single specific record. When a record is inserted or deleted,

all records must be rewritten.

Sequential file processing statements for both the BASIC compiler and the cassette based BASIC inter-

preter are listed in the following tables for comparison.

Writing data
BASIC compiler Cassette based BASIC interpreter
File open statement WOPEN #n, "filename" WOPEN /T "filename"
Data write statement PRINT #n, data PRINT/T data
File close statement CLOSE #n CLOSE/T
Cancel statement KILL #n
Réading data
BASIC compiler Cassette based BASIC interpreter
File open statement ROPEN #n, "filename" ROPEN/ T "filename"
Data read statement INPUT #n, variable INPUT /T variable
File close statement CLOSE #n # TCLOSE /T
File end detection IF EOF (#n) THEN

Note: With the BASIC compiler, a device name ($KB, $PTR, etc.) éan be written instead of a filename.

BASIC-3

#n appearing in all the BASIC compiler file processing statements is called a logical (file) number; this
must always be specified.

Only one file can be accessed at a time with the cassette based BASIC interpreter. With the BASIC
compiler, however, multiple files can be dealt with simultaneously. To achieve this, a logical number is
assigned to each file and all files are specified with logical numbers. (To prepare a file, assign a logical
number to it; this is referred to as "opening a file'").

Let’s consider an address list as a simple example.

Name 1

Address I

Name I

Address] filename = "3H—CLASS"
Name ,

Address o

As shown above, the length of records stored in a sequential file is not fixed. That is, a sequential file

is suitable for storing a set of records which have variable lengths.

The following program stores 50 names and 50 addresses in file 3H-CLASS. The following program
reads records from file 3H-CLASS and displays names and their addresses 10 at a time on the displays

names and their addresses 10 at a time on the display screen.

(Write)

100 WOPEN #3, "$FD2 ; 3H-CLASS"
110 FOR P=1 TO 50

120 INPUT "NAME=";NA$

130 INPUT "ADDRESS=" ; AD$

140 PRINT #3, NA$, AD$

150 NEXT P

160 CLOSE #3

(Read)

200 ROPEN #4, "$FD2 ; 3H-CLASS"
210-FOR P=1 TO 5:FOR Q=1 TO 10
220 INPUT #4, NA$, AD$

230 PRINT NAS$: PRINT AD$

240 NEXT Q
250 PRINT "STRIKE ANYKEY"

260 GET X$:IF X$=" " THEN 260
270 NEXT P

280 PRINT "END"
390 CLOSE #4

BASIC-4

In this example, a file is stored on the diskette in floppy disk drive 2. The statements used are explained

below.
WOPEN #n,''filename'’

This statement defines the name of the sequential file to be generated as “filename” and assigns the
logical number #n (1 ~ 126) to it to write the file; that is, it declares that the file is hereafter specified
with the logical number #n.

In the example, the statement on line 100 defines the file name as 3H—CLASS, and assigns the logical
number #3 to it and declares that the file is to be stored on the diskette in floppy disk drive 2.

PRINT #n, data

This statement appends a record whose value is given by data to the file opened with logical number #n
assigned. The file directory, however, is not cataloged when this statement is executed. If is cataloged
when a CLOSE # statement is executed.

Multiple records can be appended with a single PRINT # statement as follows.

PRINT #n; data, data, data;

OUT #n, data

Writes data byte-by-byte in the sequential file which is opened for writing with logicai number #n
assigned. When the data is a numeric value, it must be from 0 — 225. Its binary value is written in the file.
When the data is a string, characters are written in the file. Data separators (e.g., CR) are not written.

In other respects, this is the same as the PRINT # statement.

CLOSE #n (Corresponding to WOPEN)

This statement stores the names of files generated with PRINT # statements in the file directory. The

logical number definition is cleared when this statement is executed.

KILL #n

This statement is not used in the example. It cancels a WOPEN # statement. If this statement is exe-
cuted instead of the CLOSE # statement, the file directory is not cataloged. The logical number difinition

is cleared by execution of this statement.

Notes:
e A CLOSE or KILL statement without a logical number #n closes or cancels all open files and stops
motors of floppy disk drives.
e Any volume number which can be specified with D-BASIC SB-6510 cannot be specified with the
BASIC compiler.

BASIC-5

ROPEN #n,''filename"’

This statement assigns the logical number (1 ~ 126) specified by #n to the file specified by "filename"
for reading.

In the example, the statement on line 200 specifies sequential file 3H—CLASS and assigns logical
number #4 to it. It also declares that the file is to be read from the diskette in floppy disk drive 2.

INPUT #n, variable

This statement assigns a record value read sequentially from the open sequential file assigned logical
number #n into the variable.

In the example, the statement on line 220 sequentially reads two records from file 3H—CLASS and
assigns them to variables NA$ and ADS$. As is shown in the example, multiple records can be read with
a single INPUT # statement by separating the variables from each other with a comma.

INPUT #n, variable, variable, variable,

INP #n, variable

, Reads data byte-by-byte from the sequential file which is opened for reading with logical number #n
assigned and assigns it to the specified variable. When the data read is numeric data, its decimal value is
assigned to the variable. When the data read is string data, it is assigned to the variable as a string whose

length is one byte.

CLOSE #n (Corresponding to ROPEN)

This statement closes the file assigned logical number #n and clears the logical number definition.
A KILL # statement issued subsequent to an ROPEN statement acts in the same manner as a CLOSE #

statement.

WAIT X

Suspends program execution for the time specified by X. X must be numeric data from 0 — 32767; it

indicates the time in milliseconds.

BASIC-6

File Name Format

A file name must consist of a maximum of 16 characters. Characters permitted are alphabetic cha-
racters, numerals, and the symbols ! # % &’ () + - <=>@ [\and]. Small letters, graphic characters
and/or spaces cannot be used.

A file name may be preceded by the name of the device from which it is accessed.

Correct format: "$FDI ;PROG1" "PROG1" on the diskette in drive 1.
"$CMT ; SAMPLE" "SAMPLE" in the cassette file.
Y RESTE "TEST2" on the diskette in the default drive.
SPTR" Paper tape reader
"$USR2" User I/O
"SPTP/PE" Paper tape punch with even parity
Incorrect format ""$FD1" A file name is required.
"$LPT ; PROG2" $LPT cannot be assigned a file name.

The file mode is generally omitted and the .ASC mode is assumed.

File Mode

(1) WOPEN #, ROPEN #
For the WOPEN # and ROPEN # statements, the default file mode is .ASC.
(2) PRINT #, INPUT #
The PRINT # and INPUT # statements can be used only for files with file mode .ASC. For other file
modes, use the OUT # and INP # statements.
(3) XOPEN #, WOPEN/T, ROPEN/T
The file mode must be .ASC for the XOPEN #, WOPEN/T and ROPEN/T statements. The file mode

specification may be omitted.

BASIC-7

Locating the File End

No error occurs when the INPUT # statement is executed after the last record of a file has been read.
The variable(s) is loaded with zero or null. However, this serves no purpose. A special function is pro-
vided for locating the end of a file; this is EOF(#n), which gives TRUE when the end of a file is reached.

Executing
IF BOE (Fi0) THENcorioee comssiosindicn i ool

after the INPUT # statement causes the statement following THEN to be executed when the file end is

reached.

(Exercise) Rewrite the sample program on page 5 so that names and addresses are read
in groups of 10 until the file end is reached, assuming that the number of
names stored in the file is unknown.

(Example of solution) 300 ROPEN #5,"$FDI1 ; 3H-CLASS"

310 FOR 1=1 TO 10
320 INPUT #5, NAS$, AD$

330 IF EOF (#5) THEN 400
340 PRINT NAS$:PRINT AD$

350 NEXT I
360 PRINT "STRIKE ANYKEY"
370 GET X$:IF X$=" " THEN 370

380 GOTO 310
400 CLOSE #5
410 PRINT "FILE END'": END

(Exercise) Make a program which reads sequential file 3H—CLASS and generates two
sequential files, one for names and the other for addresses.

(Example of solution) 500 ROPEN #6,''$FD2 ; 3H—CLASS"
510 WOPEN #7,"$FD2 ; NAME"
520 WOPEN #8,'$FD2 ; ADDRESS"
530 INPUT #6, NAS$, AD$
540 IF EOF (#6) THEN 600
550 PRINT #7,NA$
560 PRINT #8, AD$
570 GOTO 530
600 CLOSE
610 END

(Exercise) Make a program which writes string data input from the key board to a
sequential file, and which closes or kills the opened file when CLOSE or KILL
is entered from the keyboard.

(Example of solution) 100 WOPEN #30, '"SEQ-DATAS"
110 INPUT "DATA=";A$
120 IF A$="'CLOSE" THEN CLOSE #30 :END
130 IF A$="KILL" THEN KILL #30:END
140 PRINT #30, A$: GOTO 110

BASIC-8

RANDOM FILE

A random file allows records to be written in or read from arbitrary file locations. It is useful when
many related records are to be stored and read at random. The advantages and disadvantages of random

access files are as follows.

Advantages: e Any record can be easily located.
@ It is easy to add or delete records.

Disadvantages: ® Empty records are generated, reducing the efficiency of memory utilization.

An expression is specified following the logical file number in the PRINT # and INPUT # statements to
designate a record in the file as shown below.
PRINT #n (expression), data

INPUT #n (expression), variable (where expression is a numeric value, variable or expression.)

For example, INPUT #7(21), AS$ reads record 21 of the random file assigned logical number 7 and
assigns it to string variable AS.

A limitation is placed on random files to enable random data access; that is, the record length is fixed
to 32 bytes.

expression
i 32 bytes
1
2 +. 12345678+E10 «—— Variable A = 0.12345678+E10
3
Random file < 4 ABCDEFGHI < String"ABCDEFGHI"
5 ABC <«—String "ABC"'
6

All numeric variables, including those represented exponentially, are 32 bytes or less long. However, a
string has a maximum length of 255 bytes and one whose length exceeds 32 bytes cannot be stored in a
single record of a random file.

A random file can be changed in size after its name has been stored in the file directory (that is, after
it has been closed) although a sequential file cannot. For example, assume that RND-1 is a random file
which has been generated with 20 specified in the expression and that it has been closed. Reopening it and
executing a PRINT # statement with 30 specified in the expression automatically increases the file size.

See the figure below.

IIRND-I" K ||RND_1II

1 1

2 2

3 3

! A PRINT # statement :

. is executed with .

20 expression = 30 .
specified. 30

BASIC-9

Let’s make an inventory list using a random file. The inventory includes 50 lines and each line includes
entries for item name, unit price, quantity in stock, total (unit price multiplied by quantity in stock) and e
comments.

An item number is input first followed by the other entries when storing the record for an inventory

line in the file.

Storing inventory data in a file.
100 XOPEN #5,"STORE-LIST"
110 INPUT "Item number="";K
120 IF K=0 THEN 300
130 INPUT "Item name='"; N$
140 INPUT "' Unit price=""; P
150 INPUT '"Quantity in stock=""; S
160 INPUT "Comment="";C$
170 T=P X%k 8§
180 PRINT #5 (K><5-4),N$,P, S, T,C$
190 GOTO 110
300 CLOSE #5
310 END

The random file generated has the structure shown below.

expression 55
Kk 54 (e 56 N$Item name
K=12 57 PUnit price
58 S ... Quantity in stock File
59 T ... Total "STORE-LIST"
60 C$Comment
61

As shown in the above example, data can be stored in any specified records; therefore, empty records
can be generated in the random file.

The following program reads data from a random file generated by the program shown above. —

Desire data in a file
500 XOPEN #17,"STORE-LIST"
510 INPUT, "Item number="";J: IF J=0 THEN 700
520 INPUT #17 (J>*5-4),N$,P, S, T, C$
530 PRINT "NO.";J:PRINT "Item name' ; N$
540 PRINT ''Unit price' ;P
550 PRINT "Quantity in stock" ; S
560 PRINT '"Total";T
570 PRINT "Comment' ; C$
580 GOTO 510
700 CLOSE #17
710 END

As shown above, any desired data can be read by specifying a item number.

BASIC-10

The record length of random files is fixed to 32 bytes as explained previously. Therefore, useless
memory space increases if the data length stored in each record is too short. To prevent this, two or more
valuse can be stored in a record by the procedures as shown below. If the length of a string variable ex-
ceeds 32 bytes, only the first 32 bytes will be registered; whereas if it is less than 32 bytes, the remain-

ing portion will be filled with spaces.

(Write) 100 XOPEN #5, "STORE-LIST"
110 INPUT "ITEM NUMBER='";I:IF 1=0 THEN 300
120 INPUT "ITEM NAME="';N$
130 INPUT "UNIT PRICE=";P
140 INPUT "QUANTITY IN STOCK=";H
150 INPUT "COMMENT="';C$
160 PRINT #5 (13-3),N$,P;H, C$
170 GOTO 110
300 CLOSE #5
310 END

A part of the random file generated by the above program is as shown below when I is set to 12:The
values of P and H which are separated with a semicolon in the PRINT # statement are stored in the same
record. In such a case, if the total length of values of P and H (including the carriage return code which
is a data separator) exceeds 32 bytes, the "end of record" error results and —94 is set to ERN. The former

record contents remain.

32 bytes
) 32
expression
%I* 132—)3 — 33 App]e N§$... ITEM NAME
34 120._| 12345 B s UNIT PRICE, H QUANTITY IN STOCK
35| Jonathan apples G COMMENT
36

A sample program which reads the random file generated in the above manner is shown below.
Variables to which the values stored in the same record are assigned are separated with a semicolon in the
INPUT # statement. If the value for P is stored but no value for H, O is assigned to H. That is, if no corres-

ponding data is sotred, numeric variables are set to 0.

(Read) 500 XOPEN #17,"STORE-LIST"
510 INPUT "ITEM NUMBER=";J:IF J=0 THEN 700
520 INPUT #17 (1>k3-3);N$, P; H, C$
530 PRINT J, N$
540 PRINT "UNIT PRICE=" ;P
550 PRINT "QUANTITY IN STOCK=";H
560 PRINT ''COMMENT=";C$
570 GOTO 510
700 CLOSE #17
710 END

BASIC-11

Random file control statements are explained below.

XOPEN #n,''filename'’

This statement writes the specified data in the record of (opened) logical file #n which is designated
number (1 ~ 126) to it. This operation is referred to as cross opening a file.

In the example programs on the previous page, the statements on line 100 and 500 cross-open the

random file "STORE-LIST".

XOPEN
(Cross open)

Opens a random file for writing data.
Opens a random file for reading data.

PRINT #n (expression), data

This statement writes the specified data in the record of (opened) logical file #n which is designated
by the expression. Data items must be separated with commas when many data items are specified.
In the sample program, the statement on line 180 writes the values of variables N$, P, S, T and C$ in

the 5 records starting with record (K >k 5—4). As shown in this example, multiple records can be written in

sequence.

PRINT #n (expression), data, data, data, data,

Note: The maximum length of data written in a record is 32 bytes.

BASIC-12

INPUT #n (expression), variable

This statement reads the specified record from the random file which is cross opened with logical
number #n assigned and assigns it to the specified variable. The record is specified by the expression.
In the sample program, the statement on line 520 reads the 5 records starting at record (J > 5—4) and
assigns their values to variables N§, P, S, T and C$. Multiple records can be read with a single statement as

shown in this example.
INPUT #n (expression), variable, variable, variable; ...l

Note:
Zero is assigned to a numeric variable and 32 spaces are assigned to a string variable when an empty
record is read by an INPUT # statement.

CLOSE #n

Closes the random file assigned logical number #n and clears the logical number definition. The file

directory is cataloged when this statement is executed if it was not cataloged previously.

Note:

The KILL # statement issued for a random file has the same function as the CLOSE # statement.
However, for physical reasons it is not certain that all records will be stored on the diskette with the KILL
statement; therefore, the CLOSE statement should be used.

Using EOF (fn)

EOF (#n) can be used to detect file end (or out-of-file) for random files.
The following sample program displays all data stored in random file "STORE-LIST" from the begin-
ning of the file to its end.

700 XOPEN #20,''STORE-LIST"

710 K=1

720 INPUT #20 (K>k5-4),N$,P,S, T, C$
730 IF EOF (#20) THEN 900

740 PRINT "Item number'' ; K

750 PRINT "Item name''; N$

760 PRINT "Unit price' ;P

770 PRINT '"Quantity in stock” ; S

780 PRINT '"Total";T

790 PRINT "Comment" ;C$

800 K=K+1:GOTO 720

900 CLOSE #20

910 PRINT "FILE END HERE'": END

BASIC-13

EXCEPTION PROCESSING CONTROL

The BASIC program stops execution of a program and outputs and error message when an error occurs
during program execution. However, it is not necessary for a program to stop when an error occurs if the
cause of the error is known and an appropriate exception processing routine is included in the program to
provide a countermeasure.

The exception processing statements are used for this purpose.

ON ERROR GOTO linenumber
This statement declares that control is transferred to the routine indicated by linenumber when an
€Iror OcCurs.

ERN, ERL
ERN and ERL are the special variables to which the error number and the error line number are
assigned when an error occurs. See page 34 for the error numbers. When an error occurs during
execution of a statement which has no line number, ERL is loaded with the first line number
preceding the statement.

RESUME
This statement returns control to the main program after error processing has been completed.

RESUME linenumber Returns control to the location specified by linenumber.
RESUME 0 Returns control to the beginning of the main program.

OFF ERROR
This statement cancels a preceding ON ERROR statement. That is, when an error occurs after this
statement, a standard error message is displayed and program execution is stopped. Control is
returned to FDOS.

ON BRKEY GOTO linenumber
This statement declares that control is transferred to the location indicated by linenumber when
the [BREAK] key is pressed.

OFF BRKEY
This statement cancels a preceding ON BRKEY statement. That is, control is returned to FDOS
when the [BREAK| key is pressed.

ON KEY GOTO linenumber
Declares that control is transferred to the routine starting at the specified line number when a key
is pressed. The line number which is executed when the key is pressed is stored in variable ERL

and the code for the key pressed is stored in variable KYS.

BASIC-14

ON KEY GOSUB linenumber
Declares that control is transferred to the subroutine starting at the specified line number when a
key is pressed. The line number which is executed when the key is pressed is stored in variable
ERL and the code for the key pressed is stored in variable KY$. After the subroutine is finished,

control is returned to the line number following the one stored in ERL.

OFF KEY

This statement cancels a preceding ON KEY statement.

Note:
An error occurring during execution of a CLI or RUN command included in a BASIC program is some-

times not processed by an ON ERROR statement.
The following sampel program shows use of exception processing statements.

Calculation of tangent

100 ON ERROR GOTO 1000 il
110 FOR TH=0 TO 180 STEP 30 A

120 PRINT TH, TAN (7 * TH/180) ; i
130 NEXT : END i i
1000 PRINT "OVERFLOW" ! |
1010 RESUME 130 i !
|
(Result) : :
RUN |45 |
1 O 5]) 1 o)9
190 0°.45° 190
0 0 : —1 :
30 0.57735027 i i
60 1.7320508 E i
90 OVERFLOW i :
I
120 —1.7320508 ' !
150 —0.57735027
180 0

In this sample program, "OVERFLOW" is displayed when overflow occurs upon calculation of the
tangent on line number 120. Actually, when TH=90, TAN (m/2) = o0 and overflow results. Control is then
transferred to the statement on line number 1000, "OVERFLOW" is displayed and the statement on line

number 1010 returns control to the main program.

BASIC-15

| - FDOS COMMANDS ¥

FDOS commands can be included in a BASIC program.

—Built-in Commands—

FDOS built-in commands are commands whose processing routines are resident in the memory. Each
FDOS built-in command used in a BASIC program is written with a mandatory space between the com-
mand and arguments and with the argumetns enclosed in double quotation marks. (Arguments may be

string variables.)

Examples: DELETE. .""SAMPLE" Deletes the file "SAMPLE"
- A space is mandatory.
A$ ="SAMPLE" : DELETE, ,A$ - Same as the above.
DELETE .,"ABC" ,"XYZ" Deletes files "ABC' and "'DEF"".
DELETE. ,"ABC , XYZ" Same as the above.
DIR/P._"$FD1" Outputs the directory of drive 1 to the printer.
HCOPY Outputs the ontents of the CRT screen to the printer.
RENAME ., "ABC", "DEF" Renames the file.
MON Returns control to the monitor.
FREE : DIR Executes both FREE and DIR command.

L represents a space.

As shown above, arguments are enclosed in double quotation marks or specified with string variables
when FDOS built-in commands are used in a BASIC program. Refer to the System Command Manual for

details on each FDOS command. i

BASIC-16

—Transient Commands—

FDOS transient commands are commands whose processing routines are not resident in memory but are
loaded from the master or submaster diskette when they are required for execution. Therefore, the master
or a submaster diskette must be loaded in the floppy disk drive when FDOS transient commands are used
in a BASIC command.

The CLI (Command Line Interpreter) statement is used to load and execute FDOS transient commands
in a BASIC program. An operand of the CLI statement consists either of FDOS transient commands and
arguments enclosed in double quotation marks or a string variable to which the FDOS transient commands
and arguments are assigned in advance. The first operand must be preceded by a space. The operands

of the CLI statement may be written in the multistatement form.

Examples: CLI_,"EDIT" Calls the FDOS text editor.
CLI__"ASM. ABC" Assembles source file ABC.ASC to generate relocatable
file ABC.RB.
CGLI..;"ASM" ''ABC" Same as the above.
A$ ="ASM__,ABC": CLI._A$ Same as the above.
CLI_.,"2>LINK. .XYZ" Specifies SFD2 as the default drive and links XYZ.RB

to generate object file XYZ.OBJ.

CLI_"XFER__$PTR, XYZ : TYPE_.XYZ" Any built-in commands and multistatement form can
be included in double quotation marks.

An FDOS commands cannot be executed when the usable memory area is too small for it.

Note:
FDOS commands LIMIT, DEBUG and EXEC cannot be executed in a BASIC program.
(CLI __ "LIMIT ., $C000" not allowed)

—Changing the Default Drive—

The default drive is automatically selected when no drive number is specified in a file control state-
ment. The default drive number is displayed to the left of " > " while in the FDOS command wait state.

The default drive can be changed in the following manner.

(815 ERE Changes the default drive to $FD1.
CLL:- '3 >" Changes the default drive to $FD3.
CLI__STRS(N) +">" Changes the default drive number to N.

BASIC-17

—Run Statement—

The RUN statement is similar to the SWAP statement in D-BASIC SA-6510. A RUN statement used in
program (A) generated with the BASIC compiler loads and runs another specified program (B) which was
also generated with the BASIC compiler. In this situation, program control is returned to program (A)
when a STOP or END statement is executed in program (B).

The RUN statement is different from the SWAP statement in the following.

1. Variables used in program (A) and program (B) are treated as different variables even if they have

identical names.

2. Program A is stored in the memory while program (B) is being executed and program (B) is cleared

after it has been completed.
It is convenient to use a pseudo device (SMEM) for transfer of data between program (A) and program
(B). SMEM allows a memory area to be treated as an I/O device so that data can be read and written in the

memory area.

(Sample program)

Program (A)
100 WOPEN #9,"$SMEM" Opens SMEM for writing data.
110 PRINT #9,A,B,A$ Writes A, B, A$ in SMEM.
120 CLOSE #9. ..o vvviininiiennnnnns Closes SMEM.
130 " RUNSMPROGRAM(B)™ i ooy oo d it Loads and executes program (B).
Program (B)
10 ROPEN #9,"SMEM"............... Opens $MEM for reading data.
20 INBUT #9. X. Y NS -« v o s, . o0 Reads data.
30 CROSE #9 .iiivvvncanmmmmmnns s oi Closes SMEM.
40 DELETE/N "$MEM" Clears SMEM to conserve memory space.
900 STOPR ¢ s sogle commmmn s 555 5 5 595 40 el Returns control to program (A).

The END statement in program (B) kills all files opened before returning control to program (A). The
STOP statement in program (B) returns control program (A) with all files open.

BASIC-18

EXTERNAL STATEM ENT

The EXTERNAL statement allows a BASIC program to execute external commands and functions
.whose processing routines are coded with the assembler. (A sample program is shown in the Programming
Utility Manual).

In the description below, the subroutines in bold face type are stored in RELO.LIB on the master
diskette. For details, refer to the Library/Package.

—External Function Definition—
Ex 1) EXTERNAL FNA, FNSUB2
Defines external functions FNA and FNSUB2. A function name must be started with FN and
must be no longer than 6 characters.
—Calling External Functions—
Ex 2) A = FNA (X)
The number of parameters of each external function is 1. Character strings cannot be used as
parameters.
—External Command Definition—
Ex 3) EXTERNAL PLOT, SEND, RCV
Defines external commands PLOT, SEND and RCV. No command may be longer than 6
characters.
—Calling External Command—
Ex 4) PLOT X, Y: POINT 5,8
Any numeric constant, numeric variable, string variable, array element, string array element
or expression starting with + or — sign. (+A+B is acceptable. but A+B is not.)
—Coding External Functions—
An external function is coded with the assembler. The function name must be declared with
the ENT instruction. The parameter is converted into signed 16-bit binary format and loaded
into the HL register pair. (If it cannot be converted into 16-bit binary, 32767 or —32768 is
loaded into the HL register pair and the carry flag is set.) The RET instruction is used to
return control to the BASIC program. The HL content upon return is used as the value of the

function. Routine BEERR is called when an error occurs.

Ex 5) FNSUB2 : ENT

LD (PARAM), HL ; The HL register pair contains a parameter value.
JR C,ERR
LD HL, (ANS) ; Loads the return value into HL.
RET ; Returns control to the BASIC program.
ERR: CALL BEERR ; Calls the error routine.
DEFB 101 ; Error number
DEFM ’IL PARA’ ; Error message
DEFB ODH
END

BASIC-19

—Coding

Ex 6)

Ex 7)

Ex 8)

External Commands—

PLOT: ENT ; Command name
DEFB 2 ; The number of parameters is 2.
DEFB 0 ; The first parameter is a real number.
X: DEFS 2 ; The area in which the first parameter address is stored.
DEFB 0 ; The second parameter is a real number.
Yo DEFS 2 ; The area in which the second parameter address is stored.
; ; The beginning of the program
LD HL, (X) ; HL < First parameter address
CALL ..INTO ; HL < 16-bit binary
JP C,ER3 ; Indicates error 3 when the parameter value cannot be converted
: into 16-bit binary.
RET ; Returns control to the BASIC program.
END

The above program is modified as follows when data is to be transferred from the assembly

program to the BASIC program.

LD | | B — ; Loads data to be transferred to the BASIC program into HL.
LD DE, (X) ; Loads the first parameter address into DE.
CALL ..FLTO ; Calls the routine which converts data into real numbers.

String transfer (from the BASIC program to the assembly program)

SENT : ENT ; Command name ;
DEFB 1 ; The number of parameter is 1.
DEFB 80H ; The parameter is a string.
DATA: DEFS 2 ; The area in which the string address is stored.
; ; The beginning of the program
LD HL, (DATA) ; HL < string address (type 1)
CALL .MOVFE’ ; Calls the routine which converts strings from type 1 to type 2.

After execution of the routine, DE contains the first address of
the type 2 string.

RET

Type 1 string Gl v Type 2 string
DEFB length s el DEFM 4
DEEM: ™ oo ’ DEFB ODH

BASIC-20

Ex 9) String transfer (from the assembly program to the BASIC program)

REVEESWENIE ; Command name
DEFB 1 : The number of parameters is 1.
DEFB 80H ; The parameter is a string.
DATA: DEFS 2 : The area in which the string address is stored.

: The beginning of the program

LD HL, ADRS : HL < the starting address of the string (type 1) to be transferred.
LD DE, (DATA) : DE < the starting address of the area in which the result is stored.
CALL .LOADS ; Calls routine .LOADS. This subroutine transfers string data from
RET an assembly subroutine to a BASIC program. The contents of

registers BC’, DE’, HL', IX and 1Y are saved.

—Linking External Functions and Commands with BASIC Programs—

A BASIC program generated by the BASIC compiler and external routines generated by the assembler
are relocatable files. These are linked with RELO.LIB to generate an object file.

Ex 10) 2>LINK PROGI,PLOT

L Generated by the assembler
Generated by the BASIC compiler

2> RUN PROGI

BASIC-21

SAMPLE PROGRAM

The sample program "8-QUEEN" is stored in the master diskette. Compile, link and execute the pro-

gram according to following procedures.

BASIC 8-Queen
LINK 8-Queen
RUN 8-Queen

BAZIC compiler SA-7781 <&-GUEEN: page 1 22881
BEEF TI$="GEAARE": PRINT “E"
G546 DIM LOCATE(2)HFLAG(E)) DIFLAG(1S),D2FLAG(15)
BE7F CURSOR 12,8: PRINT * "
HEE4 CURSOR 12,1t FRINT " Z-QUEEN »
AED0D CURSOR 12,2: PRINT © o
@164 CURSOR"9% 44 PRINT '« — 1SR Jioify
@13c FOR I=8 Tn &4
@148 FRINT * SRR e
8195 PRINT ® s S B e
@1EE NEXT 1
@1oz FRINT * P4] & § et 4"
H1EE FRINT * RN O S5
Bzl PRINT “DEBEE(j
A2z Y=1: LOCATE(1)=1: X=1
BZSC 188 HFLAG(X)=1: DIFLAG(Y+X-1)=1: DZFLAG(Y-X+8)=1: Y=Y+i: X=1
B2FC 288 IF HFLAG(X)<:>@ THEN 288
B39 IF DIFLAG(Y+X-1)< >3 THEN Z@¢
A374 IF D2FLAG(Y-X+3) THEN 3
@3 AF LOCATE(Y)=X: IF Y<{& THEN
H3E@ BOSUE 4@@
BZF2 366 IF X<& THEN X=X+1: GOTO Zo@
A41F Y=Y-1: IF Y=8 THEN CURSOR @,28: PRINT TI$: PRINT "FINISH": END
Y] X=LOCATE(Y): HFLAG(X)=8: DIFLAG(Y+X-1)=@: DOZFLAG(Y~X+&)=@
B585 GOTO 298 :

GBS ER 46E REM t+1

8511 NUMEBEER=NUMBER+1: CURSOR 1,4: PRINT NUMRER:

BSIC CURSOR 8,4

A545 FOR I=1 TO =

B340 FRINT "2 bbbl sl ke

aszv NEXT 1

HSEF FOR I=1 TO 8: CURSOR LOCATE(I)*2+8,1#2+32: FPRINT "#%:
BART CURSOR 26,C5RY: PRINT LOCATE(I)

BéRE NEXT

HA41 FRINT TI%

BE4F RETURN

**% Compiler found no errors.

BASIC-22

BASIC COMPILER STATEMENT LIST

The format and function of every statement is subject to change when new versions of the BASIC

compiler are issued. The following lists are based on BASIC Compiler SA-7701.

—FDOS commands (For details, refer to the System Command Manual.)—

BUILT-IN 100 DIR Any FDOS built-in command can be included in
COMMAND 110 DIR/P a BASIC program as shown at left. In this case,
. 120 DIR "$FD3" arguments must be enclosed in double quotation.
130 DELETE '"SEQ-DATA-1" marks or must be represented as string variables or
140 RENAME "NAMEI1", A§ expressions.
150 RENAME '"NAME2", "NAME3"
160 FREE

170 RUN A$+B$+"HEAD—ON"

CLI 210 CLI "2>XFER $PTR/PE, ABC"| Either FDOS built-in and transient commands can
290 CLI: S BEDER" be executed during execution of a BASIC program
230 CLI '"ASM ABC" by using the command line interpreter (CLI).
240 CLI "ASM'", A$ However, the LIMIT, DEBUG and EXEC com-

mands cannot be executed.

—Sequential file control statements—

WOPEN # WOPEN #3,"SFD2 ; Defines the name of a sequential file to be generated as''SEQ —
SEQ-DATA 1" DATA 1" and opens it with logical number 3 assigned on the
diskette in drive 2.

PRINT # PRINT #3, A, A$ Writes the contents of variable A and string variable A$ in

i succession in the sequential file assigned logical number #3.
The file directory is not cataloged until a CLOSE # statement
is executed.

ouT # OuUT #3,A Writes the data in variable A byte-by-byte to the file opened
with a WOPEN # statement with logical number #3 assigned.

CLOSE # CLOSE #3 Closes the sequential file assigned logical number #3 which
(corresponding to WOPEN #) | was previously opened with the WOPEN #3 statement. The
directory of the file generated by the WOPEN # statement is
cataloged and the logical file number assignment is cleared
when the file is closed.

KILL # KILL #3 Kills the sequential file assigned logical number #3 with the
WOPEN # statement. The file directory is not cataloged. The
logical file number assignement is cleared.

BASIC-23

ROPEN #

INPUT #

INP #

CLOSE #

—Random file control statements—

XOPEN #

PRINT #()

INPUT #()

CLOSE #

CLOSE

KILL #

IF EOF (#)

—Exception

ON ERROR
GOTO

ERN

ERL

ROPEN #4,"$FD2 ;
SEQ-DATA 1"

INPUT #4, A(1), B$

INP #, A

CLOSE #

(corresponding to ROPEN #)

XOPEN #5,"$FD3 ;
DATA-R1"

PRINT #5(11), R(11)

PRINT #5(20), ARS, AS$

INPUT #5(21), R$

INPUT #5(11), A(11),
AS$(12)

CLOSE #5

CLOSE

KILL

IF EOF (#5) THEN 700

Read-opens sequential file “SEQ-DATA 1'" on the diskette
in drive 2 with logical number #4 assigned.

Reads data from the beginning of the sequential file assigned
logical number #4 and assigns data to array A(1) and string
variable BS$ in that order.

Reads data byte-by-byte from the sequential file assigned
logical number #4 and assigns data to variable A.

Closes the sequential file assigned logical number #4 and clears
the logical file number assignment.

This XOPEN statement opens random file "' DATA-R1" on the
diskette in drive 3 with logical number #5 assigned for reading
or writing data; if the file does not exist, the file name "DATA
R1" is defined with the logical number #5 assigned, then the
file is opened.

Writes the contents of element R(11) of one-dimensional
array R() in record 11 of the random file assigned logical
number #5.

Writes the contents of string variables AR$ and AS$ in records
20 and 21, respectively, of the random file assigned logical
number #S. If the length of the contents of variable exceeds
32 bytes, the excess is ignored.

Reads the contents of record 21 of the random file assigned
logical number #5 into string variable RS,

Reads the contents of records 11 and 12 of the random file
assigned logical number #5 into array element A(11) and
string array element A$(12).

Closes the random file assigned logical number #5 which was
opened by the corresponding XOPEN # statement and clears
the logical file number assignment.

Closes all open files and stops motors of floppy disk drives.

Kills all open files and stops motors of floppy disk drives. This
statement does not access any floppy disk drive.

Transfers program control to the routine starting to line
number 700 if the file end is detected during execution of an
INPUT # statement against a sequential or random file.

processing statements—

ON ERROR GOTO 1000

IF ERN =44 THEN 1050

IF ERL =350 THEN 1090

Declares that control is transferred to line number 1000 when
an error occurs.

Transfers control to line number 1050 when the error number
is 44.

Transfers control to line number 1090 when an €IT0r Occurs
on line number 350.
BASIC-24

ERMS$

RESUME

OFF ERROR

ON BRKEY
GOTO

OFF BRKEY
ON KEY GOTO

ON KEY
GOSUB

OFF KEY
KY$

—Assignment

\l LET

—Input and Output statements—

PRINT

INPUT

IF (ERN =53) > (ERL =
700) THEN PRINT ERMS:
END

RESUME 100

RESUME 0

ON BRKEY GOTO 2000

OFF BRKEY
ON KEY GOTO 3000

ON KEY GOSUB 4000

OFF KEY
IF KY$="5" THEN 4000

statement—

<LET> A=X+3

10 PRINT A
20 7 A$

100 PRINT A ; AS$,B;B$

110 PRINT "COST=";CS
120 PRINT

10 INPUT A

20 INPUT A$

30 INPUT"VALUE?" ;D

40 INPUT X, XS$,Y,Y$

Displays the error message and terminates program execution
when an error of error number 53 occurs on line number 700.
The error number, the line number, and the error message
are stored in variable ERN, ERL, and ERMS, respectively.

Returns control to the line number 100 when error processing
is completed.

Transfers control to the beginning of the main program.
Cancels a preceding ON ERROR statement.

Declares that control is transferred to line number 2000 when

the | BREAK | key is pressed.
Cancels a preceding ON BRKEY statement.

Declares that control is transferred to line number 3000 when
key is pressed. The line number which is executed when the
key is pressed is stored in variable ERL and the code for the
key pressed is stored in variable KYS$.

Control is transferred to the subroutine starting at line number
4000 when a key is pressed. The line number which is exe-
cuted when the key is pressed is stored in ERL and the key
code is stored in KYS$.

Cancels a preceding ON KEY statement.

Transfers control to line number 4000 when the | 5] key is
pressed after an ON KEY trapping.

Assigns the sum of the value of variable X and 3 to variable A.
LET may be omitted.

Displays the value of variable A on the CRT screen.
Displays the contents of variable A$ on the CRT screen.

Numeric variables and string variables may be used mixedly in
a PRINT statement. The value of a variable following a semi-
colon is displayed closed to the previous value displayed. The
value of a variable following a comma is displayed at the next
tab set position. (Tabs are set every 10 characters).

Displays the string enclosed in double quotation marks.

Makes a line feed.

Obtains numeric data for variable A from the keyboard.
Obtains string data for variable A$ from the keyboard.
Displays string ""VALUE?" before obtaining data for D from
the keyboard. A semicolon separates the string from the
variable.

Numeric variables and string variables can be used in combi-
nation by separating them from each other with a comma.
The types of data entered from the keyboard must be the

same as those of the corresponding variables.

BASIC-25

GET

READ~DATA

RESTORE

RESTORE

10 GET N

20 GET K$

10 READ A, B, C
1010 DATA 25, 0.5, 500

10 READ HS$,H, S$, S
30 DATA HEART, 3
35 DATA SPADE, 11

500 RESTORE

10 READ A, B,C

20 RESTORE

30 READ D, E

100 DATA 3,6,9,12,15

—Loop statement—

FOR ~ TO
NEXT

10 FOR A=1TO 10
20 PRINT A
30 NEXT A

10 FOR B=2 TO 8 STEP 3
30 PRINT B2
30 NEXT

R
Z g
tr
25
'—],..]w
o
/ w 3
=
o
w
o

60 NEXT B, A
70 NEXT A, B

Obtains a numeral for variable A from the keyboard. When
no key is pressed, zero is assigned to A.

Obtains a character for variable K$ from the keyboard. When
no key is pressed, a null is assigned to K§.

Assigns constants specified in the DATA statement into the
corresponding variables specified in the READ statement. The
corresponding constant and variable must be of the same data

type.

Assigns 25, —0.5 and 500 to variables A, B and C, respectively.

Assigns string "HEART" to string varialbe H$ and assigns 3
to numeric variable H and so on.

With a RESTORE statement, data in the following DATA
statement which has already been read by preceding READ
statements can be re-read from the beginning by the following
READ statements.

The READ statement on line number 10 assigns 3, 6 and 9
into variable A, B and C, respectively. Because of the RE-
STORE statement, the READ statement on line number 30
assigns 3 and 6 again into D and E, respectively.

The statement on line number 10 specifies that the value of
variable A is varied from 1 to 10 in increments of one. The
initial value of A is 1. The statement on line number 20
displays the value of A. The statement on line number 30
increments the value of A by one and returns program execu-
tion to the statement on line number 10. Thus, the loop is re-
peated until the value of A becomes 10. (After the specified
number of loops has been completed, the value of A is 11.)

The statement on line number 10 specifies that the value of
variable B is varied from 2 to 8 in increments of 3. The value
of STEP may be made negative to decrement the value of B.

The FOR-NEXT loop for variable A includes the FOR-NEXT
loop for variable B. As is shown in this example, FOR-NEXT
loops can be enclosed in other FOR-NEXT loops at different
levels. Lower level loops must be completed within higher
level loops.

The statements on lines 40 and 50 in the above example can

be combined into one shown on line 60. Line 70 results in an
error.

BASIC-26

N\

—Branch statements—

GOTO

GOSUB
~ RETURN

IF ~ THEN

IF ~ GOTO

IF ~ GOSUB

ON ~ GOTO

ON ~ GOSUB

100 GOTO 200

100 GOSUB 700

800 RETURN

10 IF A >20 THEN 200

50 IF B<3 THEN B=B+3

100 IF A >=B THEN 10

30 IF A=B > 2 GOSUB 90

50 ON A GOTO 70, 80,90

90 ON A GOSUB 700, 800

—Definition statements—

DIM

10 DIM A(20)

20 DIM B(79, 79)

30 DIM C1$(10)

40 DIM K$(7, 5)

Jumps to the statement on line number 200.

Calls the subroutine starting on line number 700.
At the end of a subroutine, program execution returns to the
statement following the corresponding GOSUB statement.

Jumps to the statement on line number 200 when the value of
variable A is more than 20; otherwise the next statement is
executed.

Assigns B+3 to variable B when the value of B is less than 3;
otherwise the next statement is executed.

Jumps to the statement on line number 10 when the value
of variable A is equal to or greater than the value of B; other-
wise the next statement is executed.

Jumps to the subroutine starting on line number 90 when the
value of variable A is twice the value of B; otherwise the next
statement is executed.

(When other statements follow a conditional statement on the
same line and the conditions are not satisfied, those following
an ON statement are executed sequentially, but those follow-
ing an IF statement are ignored and the statement on the next
line is executed. Handling of the multistatement after IF
statement is the same as in MZ-80K/A/B BASIC interpreter,
but different from that in MZ-80K compiler.)

Jumps to the statement on line number 70 when the value
of variable A is 1, to the statement on line number 80 when it
is 2 and to the statement on line number 90 when it is 3. When
the value of A is O or more than 3, the next statement is
executed. This statement has the same function as the INT
function, so that when the value of A is 2.7, program execu-
tion jumps to the statement on line number 80.

Calls the subroutine starting on line number 700 when the
value of variable A is 1 and calls the subroutine starting on line
number 800 when it is 2. When the value of A is O or more
than 3, the next statement is executed.

When an array is used, the maximum number of array ele-
ments must be declared with a DIM statement. The number of
elements is limited by the available memory space.

Declares that 21 array elements, A(0) through A(20), are used
for one-dimensional numeric array A().

Declares that 6400 array elements B(0, 0) through B (79, 79),
are used for two-dimensional numeric array B().

Declares that 11 array elements, C1$(0) through C1$(10), are
used for one-dimensional string array C18().

Declares that 48 elements, K$(0, 0) through K$(7, 5), are used
for two-dimensional string array K$().

BASIC-27

DEF FN

REM

STOP

END

CURSOR

CSRH

CSRV

TI$

WAIT

—Music control statements—

MUSIC
TEMPO

100 DEF FNA(X)= X12—X
110 DEF FNB(X)=LOG (X)

*]

120 DEF FNZ(Y)=LN(Y)
130 DEF FNC(X, Y)=SQR

(X12+Y12)

140 DEF FNAS$(X$)=M1D$

(X8,3,3)

200 REM JOB-1
300 REM 13
400 REM 1

850 STOP

1999 END

50 CURSOR 25, 15
60 PRINT "ABC"

100 TI$ ="102030"

10 WAIT 20

300 TEMPO 7

310 MUSIC"DE #FGA"

300 M1$="C3EG+C"
310 M2$="BGD-G"
320 M3$="C8R5"

330 MUSIC M1$,M2$, M3$

A DEF FN statement defines a function. The statement on
line number 100 defines FNA(X) as X2 —X. The statement on

line number 110 defines FNB(X) as log;oX+1 and the state-

ment on line number 120 defines FNZ(Y) as LN(Y). The state-
ment on line number 130 defines FNC(Y, Y) as v/ X2+Y? and
the statement on line number 140 defines FNA$(X$) as MID$
(X$, 3, 3). The number of parameters is arbitrary.

—Comment statement and control statements—

Comment statement (not executed)
Performs three line feeds on the list during compiling.

Performs a form feed on the list during compiling.
The same as END.

Stops program execution and kills all open files. (See page 18
for exceptions).

The CURSOR statement positions the cursor to any position
on the screen. The X coordinate ranges from 0 to 39 (from
left to right) and the Y coordinate from 0 to 24 (from top to
bottom). The statements shown at left display the string
"ABC" at the location starting at the position 26th characters
from the left and 16th characters from the top.

System variable which contains the X coordinate of the cur-
rent cursor position.

System variable which contains the Y coordinate of the cur-
rent cursor position.

Sets the built-in clock to 10 : 20 : 30. The time data is a 6-
digit string enclosed with double quotation marks.

Suspends program execution for 20 ms.

The MUSIC statement generates a melody from the speaker
according to the melody string enclosed in quotation marks at
the tempo specified by the TEMPO statement.

The TEMPO statement on line number 300 specified tempo 7
(fastest speed). The MUSIC statement on line number 310
generates a melody consisting of D, E, F sharp, G and A. Each
note is a quarter note. When the TEMPO statement is omitted,
tempo 4 is set.

In this example, the melody is divided into 3 parts and

assigned to 3 string variables. The melody shown below is
played through the speaker at tempo 4.

SEEEE

BASIC-28

—Graphic control statements—

SET

RESET

—Machine

POKE

PEEK

USR

EXTERNAL

—Printer control

PRINT/P

COPY/P

PAGE/P

la

100 SET X,Y
200 RESET X,Y

300 SET 40,25

310 RESET 0,0

120 POKE 49450, 175

130 POKE AD, DA

140 POKE $D000, 83, 68,

70, 65

150 POKE $C000, A$

150 A=PEEK(49450)

160 B=PEEK(C)

500 USR(49152)

550 USR(AD)

570 USR($C000)

10 EXTERNAL PLOT,
FNPX

20 PLOT X,Y

30 A=FNPX(10)

statements—

10 PRINT/P A, A$

20 PRINT /P CHRS$(5)

10;:.COPY:/P. il

100 PAGE/P 20

This statement sets or resets a dot in the CRT screen.
The dot position is specified with X coordinates (0 ~ 79 from
left to right) and Y coordinates (0 ~ 49 from top to bottom).

Set a dot in the center of the screen.

Reset a dot in the left-uper of screen.

nguage program control statements—

Stores 175 (decimal) in decimal address 49450.

Stores the value of variable DA (0 ~ 255) in the memory loca-
tion specified by variable AD.

Stores data in succession into the memory, starting at address
DOO0OH (hexadecimal).

Stores the contents of A$ in the memory, starting at address
COO00H (hexadecimal).

Converts the content of decimal address 49450 into decimal
representation and assigns it to variable A.

Converts the content of the decimal address specified in vari-
able C into decimal and assigns it to variable B.

Transfers control to decimal address 49152. This statement
has the same function as the CALL command. Accordingly,
when the RET command is encountered during execution of
the machine language program, control is returned to the
BASIC program.

Transfers control to the memory location specified by variable
AD.

Transfers control to memory location COOOH.

Defines external command PLOT and external function
FNPX. (The routines for PLOT and FNPX must be created
with the assembler.)

Example of use of the external statement and function defined
with the EXTERNAL statement.

Performs the same operation as the PRINT statement on the
optional printer. If no printer is connected, execution of this
statement results in an error.

Outputs the contents of numeric variable A, then the contents
of string variable A$ to the printer.

Performs a form feed on the printer. (CHR$(S) is a printer
control code).

Makes a copy of the contents of the display screen on the
printer.

Sets the number of lines per page on the printer form to 20.

BASIC-29

—1/0 statements—

INP @
10 INP @12, A
20 PRINT A
OUT @
39 B=Ax2
40 OUT @13, B

—Arithmetic functions—

ABS 100 A= ABS (X)
INT 100 A =INT (X)
SGN 100 A =SGN (X)
SQR 100 A =SQR (X)
SIN 100 A = SIN (X)

110 A=SIN (30>k7/180)

Cos 200 A=COS (X)

210 A=COS (200> / 180)

TAN 300 A =TAN (X)

310 A=TAN (Y *7/ 180)

AIN 400 A= ATN (X)

410 A =180/ mk ATN (X)

Reads data from the specified I/O port.

The statement on line 10 reads data from I/O port 12 (deci-
mal) into variable A.

Outputs data to the specified I/O port.

The statement on line 40 outputs the contents of variable B
to I/O port 13.

Assigns the absolute value of variable X to variable A. X may
be either a constant or an expression.
Ex) ABS (-3)=3
ABS (12)=12

Assigns the greatest integer which is less than X to variable A.
X may be either a numeric constant or an expression.
Ex) INT (3.87)=3
INT (0.6)=0
INT (-3.87)= -4

Assigns one of the following values to variable A: —1 when
X < 0,0 when X =0 and 1 when X > 0. X may be either a
constant or an expression.
Ex) SGN (04) =1
SGN (0)=0
SGN (—400) = —1

Assigns the square root of variable X to variable A. X may
be either a numeric constant or an expression: however, it
must be greater than or equal to 0.

Assigns the sine of variable X in radians to variable A, X may
be either a numeric constant or an expression. The relationship
between degrees and radians is as follows.

1 degree = & radians

Therefore, when assigning the sine of 30° to A, the statement
is written as shown on line number 110 at left.

Assigns the cosine of variable X in radians to variable A. X
may be either a numeric constant or an expression. The same
relationship as shown in the explanation of the SIN function
is used to convert degrees into radians. The statement shown
on line number 210 assigns the cosine of 200° to variable A.

Assigns the tangent of variable X in radians to variable A. X
may be either a numeric constant or an expression. The state-
ment on line number 310 is used to assign the tangent of
numeric variable Y in degrees to variable A.

Assigns the arctangent of variable X to variable A in radians.
X may be either a numeric constant or an expression. only
the result between —m/2 and /2 is obtained. The statement on
line number 410 is used to assign the arctangent in degrees.

BASIC-30

EXP

LOG

LN

100 A =EXP (X)

100 A =LOG (X)

100 A=1LN (X)

100 A = LOG(X)/LOG(Y)

120 A= LN(X)/LN(Y)

100 A=RND (1)

110 B=RND (10)

200 A =RND (0)
210 B=RND (-3)

—String control functions—

LEFT $

MID $

RIGHT $

SPACE $

STRING $

CHR $

ASC

STR$

10 A$ = LEFTS$ (X$, N)

20 B$=MIDS$ (X$, M, N)

30 C$=RIGHT $ (X$, N)

40 D$ = SPACE $(N)

50 E$=STRING § (" ",
10)

60 F$ = CHR $(A)

70 A= ASC (X$)

80 N$ = STRS$ (I)

Assigns the value of exponential function eX to variable A.
X may be either a numeric constant or an expression.

Assigns the value of the common logarithm of variable X to
variable A. X may be either a numeric constant or an expres-
sion; however, it must be positive.

Assigns the natural logarithm of variable X to variable A. X
may be either a numeric constant or an expression; however,
it must be positive.

To obtain the logarithm of X with the base Y, the statement
on line number 110 or line number 120 is used.

This function generates random numbers which take any value
between 0.00000001 and 0.99999999, and works in two
manners depending upon the value of the integer in paren-
theses.

When the value of the integer in parentheses is positive, the
function gives the random number following the one previous-
ly given in the random number group generated. The value
obtained is independent of the value in parentheses.

When the value of the integer in parentheses is less than or
equal to 0, the function gives the initial value of the random
number group generated. Therefore, statements on line
numbers 200 and 210 both give the same value to variables A
and B.

Assigns the first N characters of string variable X$ to string
variable A$. N may be either a constant, a variable or an ex-
pression.

Assigns the N characters following the Mth character from the
beginning of string variable X$ to string variable BS.

Assigns the last N characters of string variable X$ to string
variable C$.

Assigns N spaces to string variable D§.

Assigns 10 continuous asterisks to string variable E$.

Assigns the character corresponding to the ASCII code in
numeric variable A to string variable F$. A may be either a

constant, a variable or an expression.

Assigns the ASCII code (in decimal) corresponding to the first
character of string variable X$ to numeric variable A.

Converts the numeric value of numeric variable I into a string
of numerals and assigns it to string variable N§.

BASIC-31

VAL

LEN

—Tabulation

TAB

90 I=VAL (N$)

100 LX = LEN (X$)

110 LS = LEN (X$+Y$)

functions—

10 PRINT TAB(X); A

20 PRINT TAB(5) ; A$

—Arithmetic operators—

(The number to the left of each operator indicates its o

theses has first priority.)

10 A=X+3
20 B=n

10 A =X1Y (power)

10 A =X>Y (multiplication)
10 A =X/Y (division)

10 A = X+Y (addition)

10 A=X-Y (subtraction)

10 A = —B (negative sign)

—Logical operators—

@:
B<>or><
A>=0r=>

10 IF A=X THEN
20 IF A$="XYZ"
THEN'. 54

Converts string of numerals contained in string variable N$ in
to the numeric data as is and assigns it to numeric variable I.

Assigns the length (number of characters) of string variable X$
to numeric variable LX.

Assigns the sum of lengths of string variables X$ and Y$ to
numeric variable LS.

Displays the value of variable A at the (X+1)th character
position from the left.

Displays a character string in string variable A$ starting at the
6th character position from the left.

perational priority. Any group of operations enclosed in paren-

Assigns X+3 to variable A.
Assigns 7 (3.1415927) to variable B.

Assigns XY to variable A. (If X is negative and Y is not an
integer, an error results.)

Multiplies X by Y and assigns the result to variable A.
Divides X by Y and assigns the result to variable A.
Adds X and Y and assigns the result to variable A.

Subtracts Y from X and assigns the result to variable A.

Note that "—" in —B. is the negative sign and "—" in 0—B
represents subtraction.

If the value of variable A is equal to X, the statement follow-
ing THEN is executed.

If the content of variable A$ is "XYZ", the statement follow-
ing THEN is executed.

If the value of variable A is not equal to X, the statement
following THEN is executed.

If the value of variable A is greater than or equal to X, the
statement following THEN is executed.

BASIC-32

B<=or=<

&x

—Other sym

200
210

220

230

240

250

300

320

330

340

500

550

10 IF A<=X THEN

40 1F (A>X)*(B>Y)
THEN

50 IF (A>X)+ (B>Y)
THEN

bols—

2 "A+B=";A+B
PRINT "A+B=";A+B

A=X:B=X12:7A.B

PRINT "AB" ; "CD";
l'EFlI

INPUT "X=";X$
PRINT IIABH’ ncp" ;

IIEII

DIM A(20), B$ (3, 6)

A$="SHARP BASIC"
BS$="MZ-80"
C$="ABC" + CHRS (3)

A = $BFFF

S =SIN (X>n/180)

If the value of variable A is less than or equal to X, the state-
ment following THEN is executed.

If the value of variable A is greater than X and the value of
variable B is greater than Y, the statement following THEN is
executed.

If the value of variable A is greater than X or the value of
variable B is greater than the value of Y, the statement follow-
ing THEN is executed.

Can be used instead of PRINT. Therefore, the statement on
line number 200 is identical in function to that on line
number 210.

Separates two statements from each other. The separator is
used when multiple statements are written on the same line.
Three statements are written on line number 220.

Displays characters to the right of separators following charac-
ters on the left. The statement on line 230 displays "ABCDEF"
on the screen with no spaces between characters.

Displays "'X=" on the screen and awaits entry of data for X$
from the keyboard. i

Displays character strings in a tabulated format;i.e. AB first
appears, then CD appears in the position correponding to
the starting position of A plus 10 spaces and E appears in the
position corresponding to the starting position of C plus 10
spaces.

A comma is used to separate two variables.

Indicates that characters between double quotation marks
form a string constant.

Indicates that the variable followed by a dollar sign is a string
variable.

Indicates that data (2 or 4 digits) following a dollar sign is
represented in hexadecimal notation.

w represents 3.1415927 (ratio of the circumference of a circle
to its diameter).

BASIC-33

ERROR MESSAGES

—Error Messages Issued During Compiling—

Error number Message Meaning
1 syntax Syntax error
2 too big number There is a numeric value which is too large
3 il constant Illegal constant value
4 different type Data type mismatch
6 too many variables There are too many variables.
8 too long statement A BASIC text line is too long.
15 undefined function An undefined function is used.
16 undefined line-number An undefine line number is specified.
22 double defined function A function is defined two or more times.
30 il expression Illegal expression format
31 mismatch "' ("and ') " Opening and closing parentheses do not correspond.
32 reserved word A reserved word is used for another purpose.
33 il line-number Illegal line number
34 too many " (" Too many levels of parentheses are used.
35 il function Illegal function name
36 il array Illegal array
99 table overflow A program is too long and it cannot be compiled.

Note: il is an abbreviation for illegal.

—Error Messages Issued During Program Execution (BASIC Level)—

Error number Message Meaning
1 syntax Syntax error
2 overflow Operational result overflow
3 il data Tllegal data
4 data mismatch Data type mismatch
S string too long String length exceeds 255 characters.
6 memory over Insufficient memory
13 NEXT, no FOR NEXT is used without a correspoinding FOR.
14 RETURN, no GOSUB RETURN is used without a corresponding GOSUB.
21 RESUME, no ERROR RESUME is used without a corresponding error
processing statement.
24 READ, no DATA READ is used without a corresponding DATA.
37 Break BREAK]| was pressed.
38 out of index Illegal value was assigned to an element of an
array defined with a DIM statement.
39 undefined array An undefined array was used.
64 il lu# Illegal logical number

—Error Messages Issued During Program Execution (FDOS Level)—
Errors occurring during execution of an FDOS subroutine can be detected by using the ON ERROR

statement. (Sometimes errors are not detected in the case of RUN and CLI.) When errors are detected, an

FDOS error number is stored in ERN following a minus (—) sign. For example, —50 is stored in ERN

when no file is found. For FDOS error numbers, refer to the System Error Messages in the System Com-

mand Manual.

~ ~ COMPARISON WITH D-BASIC SA-6510

Item D-BASIC SA-6510 BASIC compiler
RESUME RESUME 0 RESUME 0
RESUME linenumber RESUME linenumber
RESUME
RESUME NEXT
RESTORE RESTORE RESTORE

RESTORE linenumber

(The line number cannot be specified.)

Logical open of

ROPEN #n, USR (... .)

Impossible (ASSIGN of FDOS can be used in

USR function WOPEN #n, USR (....) its place.)
FDn@v ROPEN #n, FDn@y, '"filename"' ROPEN #n, "$FDn ; filename"
DELETE FDn@y, '"filename"' DELETE "'$FDn ; filename"'
LOAD LOAD '"filename" CLI "LOAD ﬁlename"} Can be used for
LOAD T CLI "LOAD $CMT'"] object files only.
LIMIT LIMIT $B000 Impossible
LIMIT MAX The memory area must be limited with FDOS
before running the BASIC program.
LOCK LOCK '"filename" CHATR ''sign, filename, W"'
UNLOCK UNLOCK 'filename"' CHATR ''sign, filename, 0"
SWAP SWAP 'filename"' RUN "filename"' can be used in its place.
See page 16.
Commands SAVE, LIST, CONT, VERIFY, AUTO, NEW , SIZE, Commands at left cannot be used, but other
CHAIN, CLR, SWAP, LOCK, UNLOCK, WOPEN/T, commands are substituted for some of these
ROPEN/T, PRINT/T, INPUT/T, CLOSE/T commands.
FOR-NEXT Nesting is possible to a maximum of 16 levels. The number of levels is limited by usable
memory capacity.
GOSUB Nesting is possible to a maximum of 16 levels. The number of levels is limited by usable
memory capacity.
DEF FN Nesting is possible to a maximum of 6 levels. Nesting is possible to a maximum of 6 levels.
The number of parameters is 1. The number of parameters is not limited.
The DEF statement must be executed before
functions are used.
DIM The number of dimensions is1 or 2. The number of elements is limited only by
The number of elements is 0 ~ 255. the usable memory capacity. A (..)and A
A(..)and A(..,...) can be identified. (..,...)cannot be identified, so different
names must be used. When a name is declared
twice or more by DIM, only the first declara-
tion is valid.
POKE POKE address, date POKE address, data 1, data 2
Expression 2 1 3 is treated as 2 1 (=3). 2 1 —3 results in an error.

—2 1 3 is treated as —(2 1 3).

—2 1 3 is treated as —(2 1 3).

Variable name

1 or 2 alphanumerics, starting with letter.

The length of variables is not limited.

Line number

1.~165535
Line numbers are mandatory.

1~ 65535
Line numbers are not always necessary.

Hexadecimal Can be used for certain statements such as Can be used anywhere.

constant POKE and USR.

Logical number Constant from 1 to 127. Constant from 1 to 126 are variable.

File name 16 characters or less. 16 characters or less. Only alphanumerics and

specific symbols can be used. For details, refer
to paragraph 4.2.2 of the System Command
Manual. Device names $KB, $PTP, etc. can be
used instead of file names.

Error number

Somewhat different from BASIC compiler

Somewhat different from D-BASIC.

PAGE/P n

n may be either a constant, a variable or
an expression.

n must be a constant.

BASIC-35

e S R R OV

2 uhey He ﬁ]

e g e e

RS depehatientd o4 10k o

(S S A A

N 1'14

2} N D 5o .

{

(‘H l,f i ’)3 =
fer g ’f"‘{ﬂ’ﬂn

W RS e <

A T A s A

CMBRE S By
LT T T

A s

i Berseain ’i.‘lt.‘d\{b ‘.‘,‘”’ “ o

E2 R

