——— CONEENTS ——

USING LIBRARY ROUTINES. i 1
MONITOR SUBROUTINES MONEQU .LIB)co.uivuuunnn 2
FDOS SUBROUTINES (FDOSEQU .LIB)ccviviiunnn.. 7
OUEINE: S ril iiie s b e BRI | | L eriesier ot o o @ st Bommesimneniin: o s 7
CLI (Command Line Interpreter) Subroutines 8
IOCS (Input Output Control System) Subroutines 11
NIt SUDEOMIINES < &5 5 s suuv oo o5 5 6 w55 5§55 5 3 SWEPH L5 ¥ 8 17
FDOS Common Variables eewenssssssobisaassss 24
CLI Intermediate Code Table et e e e 26
BASIC RELOCATABLE LIBRARY (RELO.LIB)................. 27
Type 1 :and Type 2 Character StringtFormatsovvuvieeans 31
INDEX OF LIBRARY NAMES................. % % B 13 5 & & 32

LiB

D
(@»))
(9o}
-
O
(g
o
S
=
b
(g}
| —
O
—

& USING LIBRARY ROUTINES

The FDOS master diskette contains three libraries (MONEQU.LIB,FDOSEQU.LIB and RELO.LIB).

MONEQU.LIB is a file of monitor subroutine

addresses defined with the EQU statement. That is, GETL : EQU 0003H
it contains a program such as that shown at right which LETNL : EQU O0006H
has been assembled and converted to the library (.LIB) FRNIS. . 4uBQY . 000G
PRNT ;.. EQU . 0012H

mode. MSG : EQU 0015H
Monitor subroutines are often used when creating MSGX : EQU O0018H
programs with the assembler; in such cases, they are CETKY : EQU O001BH

BRKEY : EQU OOlEH

sed ibe low.
used as described below MELDY : EQU 0030H

First, the subroutine names are written as is (without
addresses defined) as external names when the program
is written. These are then assembled with the assembl- Baitiof the conterifs ol MONGATLAR0
er. When the assembly listing is reviewed at this time,
the symbol “E” is affixed to indicate that the names
are external names. Next, the program is linked;

MONEQU .LIB is linked at this time also. For example,

2> LINK GAMEPRGI, $FDI ; MONEQU .LIB
L Program created

MONEQU.LIB must be written last at this time.

FDOSEQU.LIB is a file of subroutine addresses in FDOS which are defined with the EQU statement; it
is used in the same manner as MONEQU.LIB. Since MONEQU.LIB is contained in FDOSEQU.LIB, it is
only necessary to link FDOSEQU.LIB when both monitor and FDOS subroutines are to be used at the

—~ same time.

RELO.LIB is a library of subroutines for programs created with the BASIC compiler. It contains sub-
routines for the four basic arithmetic operations, functional calculations, character string processing, error
message display and many others. In other words, whereas MONEQU.LIB and FDOSEQU.LIB are simple
collections of EQU statements, RELO.LIB contains actual subroutines.

When the linker is used for linkage with RELO.LIB, it is possible to select only the routines required
from the many available for linkage.

RELO.LIB is used in the same manner as MONEQU.LIB and FDOSEQU.LIB. Further, the contents
of MONEQU.LIB and FDOSEQU.LIB are included in RELO.LIB.

Source programs MONEQU.ASC and FDOSEQU.ASC are also included on the master diskette along
with MONEQU.LIB and FDOSEQU.LIB. It is possible to modify and add to the libraries by regenerating

the source programs to recreate the libraries as necessary.

Note:
Detailed procedures for using FDOSEQU.LIB are contained in "LINKING ASSEMBLY PROGRAM
WITH FDOS" in Appendix; see "EXAMPLE OF PLOTTER CONTROL APPLICATION" in Programming

Utility for details on RELO.LIB.
LIB-1

MONITOR SUBROUTINES (MONEQU.LIB)

Subroutine name Einoion Registers
(hexadecimal address) preserved
CALL LETNL ; ERET) ; All registers
(30006) To change the line and set the cursor to the beginning of the next line. Cxcept AB
CALLNL Changes the line and sets cursor to its beginning if the cursor is not All registers
(80009) already located at the beginning of a line. except AF
CALL PRNTS : ;¥ ; All registers
($000C) Displays one space only at the cursor position on the diplay screen. excpt AR
Handles data in A register as ASCII code and displays it on the screesn,
CALL PRNT starting at the cursor position. However, a carriage return is performed All registers
(80012) for ODH and the various cursor control operations are performed for except AF
11H-16H when these are included. '
Displays a message, staring at the cursor position on the screen. The
CALL MSG starting address of the message must be specified in the DE register in
advance. The message is written in ASCII code and must end in ODH. All registers
($0015) - .
A carriage return is not executed, however, cursor control codes
(11H-16H) are.
CALL MSGX Almost the same as MSG, except that cursor control codes are for Alseristers
(30018) reverse character display. ey
CALL BELL . : All registers
(S003E) Sounds a tone (approximately 880 Hz) momentarily. oot AT
Plays music according to music data. The starting address of the music
data must be specified in advance in the DE register. As with BASIC, the
CALL MELDY musical interval and the duration of notes of the musical data are ex- All registers
($0030) pressed in that order in ASCII code. The end mark must be either 0DH except AF
or C8H "m" . The melody is over if C flag is O when a return is made; if
C flagis 1 it indicates that [SHIFT| + [BREAK | were pressed.
Sets the musical tempo. The tempo data (01 to 07) is set in and called
from A register.
01 : Slowest
CALL XTEMP 04 : Medium speed Aifiibich
(80041) 07 : Fastest TRBISHET
Care must be taken here to ensure that the tempo data is entered in A
register in binary code, and not in the ASCII code corresponding to the
numbers 1 to 7 (31H to 37H).
Continuously sounds a note according to a specified division factor. The
CALL MSTA division factor nn’ consists of two bytes of data; n’ is stored at address BC and DE onl
($0044) 11A1H and n is stored at address 11A2H. The relationship between the = ok
division factor and the frequency produced is 2 MHz/nn'".
CALL MSTP ; . . All registers
($0047) Discontinues a tone being sounded. bl A

LIB-2

Registers

Subroutine name Einilion
(hexadecimal address) preserved
Sets the built-in clock. (The clock is activated by this call.) The call
CALL TIMST conditions are: All registers
($0033) A register < 0 (AM), A register < 1 (PM) except AF
DE register < the time in seconds (2 bytes)
CALL TIMRD Reads the.value of the built-in cl.ock. The conditions upon return are: All registers
(S003B) A register < 0 (AM), A register < 1 (PM) except AF
DE register < the time in seconds (2 bytes) and DE
CALL BRKEY Checks whether [SHIFT | + [BREAK | were pressed. Z flag is set if they | All registers
($001E) were pressed, and Z flag is reset if they were not. except AF
Inputs one line entered from the keyboard. The starting address where
the data input is to be stored must be specified in advance in the DE
register. functions as the end mark. 80 is the maximum number of
CALL GETL characters which can be input (including the end mark 0DH). Allissntions
($0003) Key input is displayed on the screen and cursor control is also accepted. g
The BREAK code (1BH) followed by a carriage return code (0DH) is set
at the beginning of the address specified in the DE register when |SHIFT
+ | BREAK | are pressed.
Takes one character only into A register from the keyboard in ASCII
code. A return is made after 00 is set in A register if no key is pressed All registers
when the subroutine is executed. However, key input is not displayed except AF
on the screen.
Codes which are taken into A register when these special keys are pressed are shown below.
Special key Code taken into A register
60 H
CALL GETKY INST 61 H
($001B) graphic mode 62 H
{normal mode 63 H
BREAK 64 H
or 66 H
CTRL]| +[A] ~ [Z] 01H~1AH
CTRE; |+ 1 BH
CTRL 41X 1CH
CTRL | + 1 DH
CTRI " [~ 1 EH
CTRL] + 1 FH
CALL PRTHL Displays the contents of the HL register on the display screen as a All registers
($03BA) 4-digit hexadecimal number. except AF
CALL PRTHX Displays the contents of the A register on the display screen as a All registers
($03C3) 2-digit hexadecimal number. except AF
CALL ASCI Converts the contents of the lower 4 bits of A register from hexadecimal.| All registers
($03DA) to ASCII code and returns after setting the converted data in A register. except AF
Converts the 8 bits of A register from ASCII code to hexadecimal and
CALL HEX returns after setting the converted data in the lower 4 bits of A register. All registers
($03F9) When C flag = 0 upon return A register < hexadecimal except AF

When C flag = 1 upon return A register is not assured

LIB-3

Subroutine name Function Registers
(hexadecimal address) preserved
Handles a consecutive string of 4 characters in ASCII code as hexadeci-
mal string data and returns after setting the data in the HL register.
The call and return conditions are as follows. All registers
CALL HLHEX DE < starting address of the ASCII string (string''3" "1'"""A" ""'5'") | except AF
(30410) CALL HLHEX A _pE and HL
Cflag=0 HL <« hexadecimal number (e.g., HL = 31 A5H)
C flag=1 HL is not assured.
Handles 2 consecutive ASCII strings as hexadecimal strings and returns
after setting the data in A register. The call and return conditions are as
CALL 2HEX follows. All registers
($041F) DE <« starting address of the ASCII string (e.g.,"'3" "A") except AF
CALL 2HEX L pE and DE
Cflag =0 Aregister < hexadecimal number (e.g., A register =3AH)
C flag =1 A register is not assured.
CALL 7KEY Await_s k.ey input while c?using the cursor to. flash. When a key entry is Allsegiin
made it is converted to display code and set in A register, then a return
($09B3) : except AF
is made.
Converts an ASCII value to display code. Call and return conditions are
i All registers
CALL ?ADCN A register < ASCII value
(S0BBY) CALL 7ADCN bakept Ak
A register < display code
Converts a display code to an ASCII value. Call and return conditions
are as follows. : Slihaiiene
CALL 7DACN A register < display code & AF
(SOBCE) CALL IDACN FReep
A register < ASCII value
Controls the display on the display screen. The relationship between
A register at the time of the call and control is as follows.
A reg. Same function A reg. Same function
COH Scrolling C8H
C?;';‘D‘;;)E)CT C1H C9H (graphic - normal)
C2H CAH (normal — graphic)
C3H CEH: | + (rev. < norm.) :
C4H CDH oF All reglsters
C5H CEH + [D] (roll up)
C6H CFH CTRL] + (roll down)
C7H
CALL ?BLNK Checks vertical blanking of the display screen. Waits until the vertical Allisia
($0DA6) Blanking interval starts and then returns when blanking takes place. e
Sets the current position of the cursor on the display screen in register
HL. The return conditions are as follows.
CALL ?PONT
HL <« cursor position on the display screen (V-RAM address) All ist
CALL ?PONT (Note) The X-Y coordinates of the cursor are contained in DSPXY regl.;el::rs
($OFB1) (1171 H). The current position of the cursor is loaded as floows. :iseﬁt]d

LD HL, (DSPXY); H < Y coordinate on the screen
L < X coordinate on the screen

The cursor position is set as follows.

LD (DSPXY), HL

LiB4

Subroutine name
(hexadecimal address)

Function

Registers
preserved

CALL WRINF
(80021)

Writes the current contents of a certain part of the header buffer
(described later) onto the tape, starting at the current tape position.
Return conditions
C flag = 0 No error occurred.

Cflag=1 The key was pressed.

All registers
except AF

CALL WRDAT
($0024)

Writes the contents of the specified memory area onto the tape as a
CMT data block in accordance with the contents of a certain part of
the header buffer.

Return conditions

C flag =0 No error occurred.

C flag=1 The [BREAK]| key was pressed

All registers
except AF

CALL RDINF
($0027)

Reads the fist CMT header found starting at the current tape position
into a certain part of the header buffer.

Return conditions

Cflag=0 No error occurred.

C flag = 1, A register = 1 A check sum error occurred.

C flag = 1, A register = 2 The key was pressed.

All registers
except AF

CALL RDDAT
($002A)

Reads in the CMT data block according to the current contents of a
certain part of the header buffer.

Return conditions

Cflag=0 No error occurred.

C flag = 1, A register = 1 A check sum error occurred.

C flag =1, A register = 2 The key was pressed.

All registers
except AF

CALL VERFY
($002D)

Compares the first CMT file found following the current tape position
with the contents of the memory area indicated by its header.

Return conditions

Cflag=0 No error occurred.

C flag =1, A register = 1 A match was not obtained.

C flag = 1, A register =2 The key was pressed.

All registers
except AF

LIB-5

(Note) The contents

of the header buffer at the specific addresses are as follows. The buffer starts at

address $10F0 and consists of 116 bytes.

Address Contents
This byte indicates one of the following file modes.
01. Object file (machine language program)
02. BASIC text file
IBUFE 03. BASIC data file
($10F0) 04. Source file (ASCII file)
05. Relocatable file (relocatable binary file)
AO. PASCAL interpreter text file
Al. PASCAL interpreter data file
IBU1 These 17 bytes indicate the file name. However, since ODH is used as the end mark, in
($10F1~51101) actuality the file name is limited to 16 bytes.
Example: (3] (&] M [P [
IBU18 T : 5o
($1102~$1103) Tese two bytes indicate the byte size of the data block which is to follow.
These two bytes indicate the data address of the data block which is to follow.
IBU20 The loading address of the data block which is to follow is indicated by ""CALL RDDAT"".
(81104~$1105) | The starting address of the memory area which is to be output as the data block is indicated
by "CALL WRDAT".
IBU22 Y : s B
($1106~$1107) These two bytes indicate the execution address of the data block which is to follow.
1BU24 ; :
($1108~$1163) These bytes are used for supplemental information, such as comments.
Example
Address Content
10F0 01 ; indicates an object file (machine language program).
10F1 ‘S’ ; the file name is ""SAMPLE"".
10F2 ‘A”
10F3 ‘M’
10F4 ‘P’
10F5 o
10F6 SE2
10F7 0D
10F8
iiol } Variable
1102 00 ; the size of the file is 2000H bytes.
1103 20
1104 00 ; the data address of the file is 1200H.
1105 12
1106 50 ; the execution address of the file is 1250H.
1107 12

LIB-6

~

' FDOS SUBROUTINES (FDOSEQU.LIB)

—OQutline—

FDOS subroutines can be broadly divided into three groups. That is,
1. CLI (Command Line Interpreter) subroutines
2. IOCS (Input Output Control System) subroutines
3. Utility subroutines

CLI subroutines are used to translate command lines appearing within user programs. That is, when
programs are called in which switches and arguments appear in appended format (such as RUN PROG/P
FILE1, FILE2), these subroutines translate those switches and arguments.

IOCS subroutines are used to open and close files and devices. Utility subroutines are other general

purpose subroutines.

Command lines are strings of characters (which have been converted to intermediate code) which are
input from the keyboard as FDOS commands or other character strings in the same format. In the expla-
nation below, except where otherwise indicated, command lines appear in intermediate code. See the table

on page 26 for the intermediate code.

LIB-7

—CLI (Command Line Interpreter) Subroutines—

TRS10

Function:

Input registers:

Calling procedure:

Output register:

Converts FDOS command lines written in ASCII code into intermediate code.
The HL register contains the starting address of the command line written in ASCII
code. The DE register contains the starting address of the area storing the command

line converted to intermediate code.

CALL TRSI10
CE =0 cvoomsns Normal
CE = b Error (A < error code)

Note: See the "System Error Messages' in System Command for details. The same applies below.

Registers preserved:

. CLI (Command Line Interpreter)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

All registers except AF.

Example of use (DATE/P)

Translates and executes FDOS LD HL, DATE

command lines. LD DE, (RJOB)
The HL register contains the BUeH, . DE
: CALL CLI
command line pointer. : POP HL
LD DE, (RJOB) . LD (RJOB), HL
PUSH DE . JP C, ERROR
CALL .CLI : 5 DEF
5 : B BIH
POP HL : DEFB 88H } Intermediate
LD (RJOB), HL. code for DATE/P
DEFB ODH
CF=0 ... Normal
CF=1........ Error (A < FFH)
None

Caution: The LIMIT, RUN, EXEC and DEBUG commands cannot be executed.
See page 25 for the RJOB.

? HEX (Check Hexadecimal)

Function:
Input registers:

Calling procedure:

Output registers:

Registers preserved:

Converts a 4-digit hexadecimal data item starting with "$" into sixteen bit, binary

notation.

HL contains the pointer; it should specify "$"".

CALL ?HEX
CF=1 ..., Not a hexadecimal number. (A < 3, and HL are preserved)
CE=0 v a hexadecimal number. (DE < data, HL indicates the address

following the hexadecimal number)
All registers except AF, DE and HL.

LIB-8

? SEP (Check Separator)

Function:

Input registers:
Calling procedure:

Output registers:

Registers preserved:

Checks whether the contents of the address indicated by the HL register are a sepa-
rator (one of the following: e
Register HL is the pointer.

CALL ?SEP
CEimliian ossii.. Not a separator.A<3(error code)and the HL register are preserved.
CE=0 0 A separator.

A =2CH ... The separator is a space or a comma " ", ", " (the HL register

then points to the address following the separator)
A = 0DH ... The separator is or slant "/ " (the HL register points to the
separator)

A=3AH ... The separator is a colon " :" (the HL register points to the
separator)

All registers except AF and HL.

? GSW (Check Global Switch)

Function:

Input registers:

Calling procedure:

Determines whether the global switch on the command line is correct and, if so,
stores it in the area within FDOS.

The DE register contains the starting address of the switch table. The HL register
contains the command line pointer which points to the global switch.

LD DE, SWTBL
CALL ?GSW

SWTBL : DEFB swi

Output registers:

Registers preserved:

DEFB sw2 List of items which may be used as global switches

. (these are written in intermediate code, from O to a maximum of 5.
; See page 26)
DEFB SWn

DEFB FFH End of table
CR =T i Error (A < error code)
CRZ=0 . s Normal. The HL register points to the address following the global

switch.
All registers except AF, DE and HL.

LIB-9

TESW (Test Global Switch)

Function: Determines the presence or absence of the specified global switch. Subroutine

"?GSW" must be called before this subroutine is used.

Input registers: None
Calling procedure: CALL TESW
DEFB global switch : Example: This routine outputs whether or not global
. switch /P is present to the line printer or the
Output registers: CE =00 ... : CRT.
S : CALL TESW
The specified global ; DEFB 88H ;intermediate code for /P
switch is present. : PUSH AF
. CALL C, MSG ; displayed on the CRT if the
LT . switch is not present.
o : POP AF
he specif lobal —
The specified globa : CCF _CF < CF
switch is not present. : CALL C, PMSG ; Printed on the line printer if
; ; ; the switch is present.
Registers preserved: All registers except AF, : JP C,ERROR ;indicates a line printer error.

? LSW (Check Local Switch)

Function: Used to determine the local switch which is attached to the file name on the com-
mand line.

Input registers: The HL register is the command line pointer which indicates the start of the file
name.

Calling procedure: CALL ?LSW

Output registers: _ CF=1...... Error (A < error code)
CF = Do, Normal
ZE=1 .cccoo.... No local switch. (A < 0)
VA1 e (0 [— Local switch is present. (A < intermediate code for the local
switch)

Registers preserved: All registers except AF.
Example: Read-opens (ROPEN) a file with logical number 2 if a local switch is not present; if local
switch /O is present the file is write-opened (WOPEN) with logical number 3; otherwise, an

€ITor occurs.

EXX
LD B,4 ; default file mode .ASC
EXX
CALL °?LSW
JP C, ERROR
JR NZ, L2
LD ¢ 2 ; logical number 2
CALL ROPEN
JR L3
L2: CP 89H ; intermediate code for /O
LD A '8 s error code (il local switch)
JP NZ, ERROR
LD c,3 ; logical number 3
CALL WOPEN

L3: JP C, ERROR

LIB-10

—I10CS (Input Output Control System) Subroutines—

ROPEN (Read Open)

Function:

Input registers:

Calling procedure:

Output registers:

Read-opens a file (including the input/

output device).

HL: Pointer which indicates the start of
the file name.

C : Logical number (see note 3)

B’: Default file mode (see note 1)

CALL ROPEN
@R Error (A <« error code) . FL
CESAO . s Normal

HL: Pointer (indicates the next separator)
B’ : File mode (see note 1)

C' : File attribute (see note 2)

L' : Device number

IY : Starting address of the device table

(see note 4)

Registers preserved: Only registers BC, DE and IX.

WOPEN (Write Open)

Fuction:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

Write-opens a file (including an input/

output device).

HL: Pointer which indicates the start of
the file name.

C : Logical number (see note 3)

B’: Default file mode (see note 1)

CALL WOPEN :

+PTP~:
CE =k v s Error (A < error code) .
CHS0. Normal

HL: Pointer (indicates the next separator)
B’ : File mode (see note 1)
C’ : File attribute (only for "0")
L’ : Device number
IY: Starting address of the device table
(see note 4)
Only registers BC, DE and IX.

LIB-11

Example (when $FD1 ; ABC)

LD'" HL,FL
LD C, 2 (logical number)
EXX
LD B4 (.ASC)
EXX
CALL ROPEN
CALL C,ERR (see page 23)
RE.IT Cc

. DEFB 90H ($ FD1)
DEFM ';ABC’
DEFB ODH

Example ($PTP/PE/LF)
LD HL,PTP
LD C, 3 (logical number)
EXX
LD B, 4 (.ASC)
EXX
CALL WOPEN
Jp C, ERROR
DEFB AlH ($ PTP)
DEFB 8FH (/PE)
DEFB 8CH (/LF)
DEFB ODH

MODECK (Filemode Check)

Function:

Input registers:

Calling procedure:

Output registers:

Checks whether the file mode indicated in register B’ for the file opened is correct or
not.

Register B’ contains the file mode of the opened file.

CALL MODECK

DEFB file mode number (see page 26 concerning file modes)

CE=0............. The file mode is correct.

CF=1.......... The file mode is not correct. A < error code.

Registers preserved: All registers except AF.

(Note 1)

The default file mode is the mode which is assumed when no mode is specified in the com-

mand line. The numbers enclosed in parentheses indicate the file mode number. (see page 26.)

Example:

Command line Default file mode Actual file mode

ABC . ASC .ASC (@) (ASC (4)
ABC . LIB BB G B (D
ABC
ABC

JOBT L (1) .OBJ. (1)
LASC @) .ASC (4)

(Note 2) The file attribute indicates the type of tile access, and is expressed as one of the following
ASCII codes.

(Note 3)

(Note 4)

S
gl
g
i

a file with no attribute.

a file for which reading is inhibited. (Read protected file)

a file for which writing is inhibited. (Write protected file)

a file for which both reading and writing are inhibited. (Permanent file)

However, files with the attribute "P'" can be read and written if the file mode is

.OBJ, The EXEC command can be executed if the file mode is .ASC.

Normally, the programmer does not need to be aware of file attributes since they are managed

by FDOS.

Logical file numbers are numbers within FDOS which have a one-to-one correspondence with

physical files opened (including input/output devices). Numbers from 1 to 249 may be used as

logical numbers; however, since programs within FDOS use all of the numbers from 128 on,

user programs should use only the numbers from 1 to 127 to avoid conflict.
An explanation of the device table is contained in "USER CODED I/O ROUTINES" in

Appendix; however, except for special I/O operations, the programmer normally does not

need to be aware of the contents of the device table.

LIB-12

GET1L (Get 1 Line)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

Reads in one line from the file whose logical number is specified in the C register.
The line read is one which is terminated with ODH. The data read is stored in the
area indicated by the address in the DE register. The length of the line, including
ODH, must be no more than 128 bytes.

The C register contains the logical number. The DE register contains the address of

the area in which the data is stored.

CALL GETI1L

CERi=10, s 20 Normal

CE=1AS0 . File end

CE= A0 . Error (A < error code)

1Y : Starting address of the device table (see note 4 on page 12)
Only registers BC, DE, HL and IX.

GET1C (Get 1 Character)

Function:
Input registers:
Calling procedure:

Output registers:

Registers preserved:

Reads one byte from the file whose logical number is specified in the C register.

The C register contains the logical number.

CALL GETIC

CE S0 Normal (A < data read)
CE:=il, A = Qs File end
CF=1,A+#0....... Error (A < error code)

1Y : Starting address of the device table (see note 4 on page 12)
Only registers BC, DE, HL and IX.

GETBL (Get Block)

Functions:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

Read data into the address indicated in the DE register from the file whose logical
number is specified in the C register; only the number of bytes of data indicated
in the HL register are read in.

The C register contains the logical number. The DE register contains the address in

which the data is to be stored. The HL register contains the number of bytes of data

to be read.

CALL GETBL

CE=00 s Normal DE <« address of the next block of data to be read
CF=1,A=0......... File end HL < number of bytes of data actually read
CF=1,A#0........ Error (A < error code)

IY: Starting address of the device table (see note 4 on page 12)
Only registers BC and IX.

LIB-13

? EOF (Check End-of-file)

Function: Checks for the end of a read-opened file. Z flag becomes 1" when an attempt is

made to read beyond the end of data.
Input registers: The C register contains the logical number.
Calling procedure: CALL ?EOF

Output registers: CRes s s Error (A < error code)
CF=0,ZF=1 Not file end
CF=0,ZF=0.......... File end

IY : Starting address of the device table (see note 4 on page 12)
Registers preserved: Only registers BC, DE, HL and IX.

PUT1C (Put 1 Character)

Function: Outputs one byte of data to the file whose logical number is specified in the C re-
gister.

Input registers: The C register contains the logical number. The A register contains the data to be
output.

Calling procedure: = CALL PUTIC
Output registers: CF=0............ Normal

CF=1........ Error (A <« error code)

IY : Starting address of the device table (see note 4 on page 12)
Registers preserved: Only registers BC, DE, HL and IX.

PUT1L (Put 1 Line)

Function: Outputs the line starting at the address specified in the DE register to the file whose
logical number is specified in the C register. Outputs the ending carriage return.

Input registers: The C register contains the logical number. The DE register contains the starting

address of the data to be output.
Calling procedure: = CALL PUTI1L
Output registers: CE= s, 0l Normal

CF =t pesennin. Error (A < error code)

IY : Starting address of the device table (see note 4 on page 12)
Registers preserved: Only registers BC, DE, HL and IX.

LiIB-14

p—

PUTBL (Put Block)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

Outputs the number of bytes of data indicated in the HL register to the file whose
logical number is specified in the C register, starting at the address indicated in the
DE register.

The C register contains the logical number. The DE register contains the starting
address of the data to be output. The HL register contains the number of bytes of
data to be output.

CALL PUTBL
CE=0..}.....0 Normal (DE < address following the end of the block output)
CE = Error (A < error code)

IY : Starting address of the device table (see note 4 on page 12)
Only registers BC and IX. (Register HL is also preserved if C flag = 0)

PUTCR (Put Carriage Return)

Function:

Input registers:
Calling procedure:

Output registers:

Registers preserved:

Outputs a carriage return to the file whose logical number is specified in the C
register.

The C register contains the logical number.

CALL PUTCR
CE=08 0 Normal
CRE = b Error (A < error code)

IY : Starting address of the device table (see note 4 on page 12)
Only registers BC, DE, HL and IX.

PUTM (Put Message)

PUTMX

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

Outputs the line starting at the address indicated in register DE to the file whose
logical number is specified in the C register. PUTM and PUTMX operate in the same
manner except for their handling of $CRT and $LPT. Cursor control operations ([,
B, etc.) are executed only when PUTM is used; when PUTMX is used,they are only
displayed or printed as reverse characters. The end code (ODH) is not output.

The C register contains the logical number. The DE register contains the starting
address of the data to be output.

CALL PUTM or CALL PUTMX

CE=0 s Normal

CE=1.......... Error (A < error code)

IY : Starting address of the device table (see note 4 on page 12)

Only registers BC, DE, HL and IX.

LIB-15

CLOSE (Close File)

KILL (Kill File)

Function: Closes or Kkills the file whose logical number is specified in the C register. If this
subroutine is called wflen the C register contains 0, all currently opened files will be
closed or killed. (This excludes files which were opened by FDOS itself.)

Input registers: The C register contains O or a logical number.

Calling procedure: = CALL CLOSE or CALL KILL

Output registers: CF=0........... Normal
CF=1....... Error (A < error code)

IY : Starting address of the device table (see note 4 on page 12)

Registers preserved: Only registers BC, DE, HL and IX.

LUCHK (LU Number Check)

Function: Checks whether a logical number (contained in the C register) has been defined.
Input registers: The C register contains the logical number.
Calling procedure: ~ CALL LUCHK
Output registers: CF=1....... The logical number has not been defined.
CF=0.......... The logical number has been defined.

L' « device number (see page 26 concerning device numbers)

IY < starting address of the device table. (see note 4 on page 12)
Registers preserved: All registers except AF, HL, IY, D’ and L’.

Example: LD c,5 ; logical number
CALL LUCHK
JP C, NOTUSE

EXX

LD AL ; device number
EXX

CP 4

JP C,FD

LIB-16

— Utility Subroutines—

MTOFF (Motor Off)

Function:

Calling procedure:

Registers preserved:

Stops the motor of the floppy disk drive. (The drive motor is activated automa-
tically when necessary.)

CALL MTOFF

All registers except AF.

BREAK (Check Break Key)

Function:
Input registers:
Calling procedure:

Output registers:

Registers preserved:

Checks whether |[BREAK| has been pressed.

None

CALL BREAK

CE =0 ks Not pressed.

CR=iliesin Pressed. (In this event, A < 37. 37 is the error code.)

All registers except AF.

HALT (Halt Action with Break Action)

Function:

Input registers:
Calling procedure:

Output registers:

Registers preserved:

Checks the keyboard and, if the | SPACE |key is pressed, stops execution until the
SPACE |key is pressed again. If [BREAK]| is pressed, A < 37 and CF < 1. (37 is

the error code.)

None

CALL HALT

CH =0 Normal

R = was pressed. (In this event, A < 37.)

All registers except AF.

LIB-17

SGETL (Screen Get Line)

Function: Inputs one line from the keyboard. The line which is actually input is the line in
which the cursor is located when is pressed; the maximum number of charac-
ters which can be input is 80.

Input registers: The DE register contains the starting address of the area (80 bytes required) in
which the data is to be stored.

Calling procedure: CALL SGETL

Output registers: CF=0 ... Normal
&1 SE R . BREAK |was pressed. A < 0 (not 37)

Registers preserved: All registers except AF.

LTPNL (Let Printer New Line)
PMSGX (Printer Message X)
PMSG (Printer Message)
PPRNT (Printer Print)

PPAGE (Printer Page)

Function: These are printer control routines. Each routine performs the same function for the

printer as does the corresponding monitor subroutine shown below for the CRT.

CRT

LTPNL LETNL

(carriage return)

PMSGX MSGX

PMSG MSG

PPRNT PRNT

PPAGE —_— .
Output registers: CE = s Normal

CF=1....... Error (A <« error code)

Registers preserved: All registers except AF and IY.

LIB-18

C&L1
&NL
&PRNT
&NMSG
&MSG
&1L

Function:

Output registers:

Registers preserved:

Each subroutine directs output to the printer or CRT depending on the presence or
absence of the global switch (/P). &NL, &NMSG and &1L include the HALT func-
tion (see page 17 for the HALT function).
Prepares either the printer or the CRT. This routine must be called before any
other routines are used. Further, "?GSW" must be called before this routine is
called.
Performs the same function as LETNL.
Performs the same function as PRNT.
Performs the same function as MSG.
Executes &NL, then executes &MSG.
Executes &MSG, then executes &NL.
CE=0 s Normal
Ch=ily ol Error (A < error code)

All registers except AF and IY.

See "LINKING ASSEMBLY PROGRAM WITH FDOS" in Appendix for an example of use.

LIB-19

CHKACC (Check Acc)

Function:

Input registers:

Calling procedure:

Output registers:

Checks whether the contents of A register (accumulator) match any of several
different given data items.

A contains the data items to be checked.

CALL CHKACC

DEFB n ;number of data items (1-255)
DEFB data l ‘
EE?; ja:a § _ n items of data to be compared
54 DEFM’........ * may be used with ASCIL.
DEFB datan
/41 ST (R — One of the data items matches the contents of A.
ZE=00 s No match was found.

Registers preserved: All registers except the flags.

MULT (Multiply)

Function:

Input registers:
Calling procedure:

Output registers:

Multiplies the contents of the DE register and the HL register (handling them as 16-

bit unsigned integers) and places the result in the DE register.

DE, HL

CALL MULT

CE =1 commsnen Overflow (result cannot be expressed in 16 bits)
CF=0............ Normal. The DE register contains the result of the calculation.

Registers preserved: All registers except AF, DE and HL.

SOUND (Warning Sound)

Function:

Calling procedure:

Produces the sound "AO+ARA+AR" to indicate that an error has occurred.
CALL SOUND

Registers preserved: All registers.

LIB-20

BINARY (Convert ASCII to Binary)

Function:
Input registers:
Calling procedure:

Output registers:

Registers preserved:

Example:

Converts an ASCII numeric string into a 16-bit unsigned integer.

The HL register contains the starting address of the ASCII numeric string.

CALL BINARY

CH =0 s Overflow (cannot be expressed within 16 bits)

CE =@t Normal. The DE register contains the converted data. The HL re-
gister contains the address following the end of the numeric string.
If the ASCII characters indicated by HL are not a numeric string,
CE+0.and BE < 0.

All registers except AF, DE and HL.

LD HL, BUFFER
CALL BINARY

JP C, ERROR ;if CF = 0, DE becomes 400H.
: HL points to ODH.
BUFFER: DEFM °’1024°
DEFB ODH ;must be an ASCII code for other than’ 0’ —’ 9,

CASCII (Convert Binary to ASCII)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

Example:

Converts a 16-bit unsigned integer into an ASCII numeric string.

The HL register contains the 16-bit unsigned integer. The DE register contains the
address of the area in which the ASCII numeric string is to be stored.

CALL CASCIo

The DE register contains the ending address of the ASCII numeric string obtained.
All registers except AF and DE.

LD HL, 1024
LD DE, BUFFER
CALL CASCII
BUFFER: DEFS 10 ; after conversion the ASCII numeric string > 1024’
is stored.

LIB-21

CLEAR (Clear Area)

Function: Loads a continuous area in the memory with zeros. (The memory area must be 255

bytes or less.)

Input registers: None
Calling procedure: = CALL CLEAR

DEFB length ; number of bytes to be cleared.

DEFW address ; the memory is cleared starting at this address.
Output registers: None

Registers preserved: All registers.

CHLDE (Compare HL, DE)

Function: Compares the contents of the HL register with the contents of the DE register.
Input registers: HL and DE
Calling procedure: = CALL CHLDE
Output registers: FLAG < HL — DE; thatis CF=0,ZF=0.......... HL > DE
CE= 1, ZF =0 HL < DE
CE=0,ZEs%hn4a. 1 HL = DE

Registers preserved: All registers except AF.

LCHK (Limit Check)

Function: Compares the last usable memory area (the address indicated by the stack pointer

minus 256) with the contents of the HL register.

Input registers: HL

Calling procedure: = CALL LCHK

Output registers: CE = 0 vovvmsiiiise HL <=SP-256
CF=1......... HL > SP-256

At this time, A < 21. 21 is an error code. (memory protect error)

Registers preserved: All registers except AF.

LiB-22

ERR (Display Error Message)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

ERRX

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

ERWAIT

(Display Error Message and Wait Space Key)

Function:

Input registers:
Calling procedure:

Output registers:

Displays an error message (see the System Error Messages in System Command
for details). The contents of the C register and the IY register must be preserved
from the time the error occurs until this routine is called. Further, the CLOSE or
KILL routine must not be called during that time (otherwise, the contents of the
error message may be incorrect).

The A register contains the error code (no error message is output if the error code
is FFH).

The C register contains the logical number.
l These may not be necessary depending

The IY register contains the starting address
[on the type of error.

of the device table (see note 4 on page 12)

CALL ERR
A < FFH Example:
CE<] CALL SGETL (Page 18)
: CALL NC, & 1L (Page 19)
All registers except AF. : JR NC, — 6
. CALL C,ERR
RET (&

This function displays a colon (" : '), followed by the contents of the area from the
address following a specified ODH until the next ODH; the specified ODH is the one
which is the (ACC—1)th from the address indicated in the DE register.

The DE register contains the starting

address of the message block. Example:
: 2 ERMSG: DEFM ’SYNTAX'
The A register contains a number DEFE ODH
(1-255). DEFM ’'OVERFLOW '’
CALL ERRX DEFB ODH
DEFM '’IL DATA’
A < FFH
DEFB ODH
CR< | :
All registers except AF. . LD A, 2
: LD DE, ERMSG
CALL ERRX

This displays > : OVERFLOW °.

1. Calls subroutine ERR if A # 0.

2. Displays the contents of the area starting with the address indicated in the DE re-
gister until ODH.

3. Displays ", & space key" if A = 0.

4. Waits until[SPACE |or [BREAK] is pressed.

A and DE

CALL ERWAIT

CE =00 ., [SPACE] was pressed.
GRS was pressed. (A < 37)

Registers preserved: All registers except AF.

LiB-23

—FDOS Common Variables—

LIMIT (Limit of Memory)

Number of bytes: 2
Meaning: Contains the last address plus one of RAM mounted.

ISTACK (Initial Stack Pointer)

Number of bytes: 2
Meaning: Contains the last address plus one of the memory area which is available to FDOS.

This data is used by FDOS for initialization of the stack pointer. The contents of
ISTACK may be changed by the FDOS LIMIT instruction. The contents of ISTACK

must not be changed by any other means.

ZMAX

Number of bytes: 2
Meaning: Contains the last address of the area being used by FDOS (excluding the stack). The
contents of ZMAX may be changed depending on the next subroutine called.
(ROPEN, WOPEN, CLOSE, KILL, . CLI)
Caution: The area which may be used within the user program as free area is as follows.
1. [Lowest address] = [value contained in ZMAX when the user program was
entered]
+ [number of files which are simultaneously opened
(ROPEN or WOPEN)] x 350
+ [number of files which are simultaneously write-opened]
x 142
+ [number of floppy disk units used] x 256
[Maximum address] = [stack pointer (SP)] —«, «is approximately 256.
2. From ISTACK to LIMIT—1.
3. Area reserved by the DEFS statement within the assembly program.

LIB-24

.DNAME (Default File Name)

Number of bytes: 1.7

Meaning: The file name and succeeding ODH contained in this area will be used as the default
file name when the file name is omitted. For example, when this area contains
"ABCD[CR]", "$FD3" appearing on the command line will be interpreted as
"$FD3;ABCD".

BDRIVE (Boot Drive)

Number of bytes: 1 :
Meaning: Contains the default drive number minus 1 (0—3). The default drive number is the
number which appears to the left of the prompt " >" when FDOS is in the com-

mand wait state.

MAXDVR (Maximum Drive)

Number of bytes: 1

Meaning: Contains the number of floppy disk dirves connected (1—4).

TODAY

Number of bytes: 7
Meaning: Contains the month, day and year followed by ODH; each element of the date is
indicated with a two-digit ASCII code.

RJOB (Running Job Pointer)

Number of bytes: 2
Meaning: Area which indicates how far command line interpretation has proceeded. When
command lines are interpreted in a user program, the address following that of the

last command line interpreted must be placed in RJOB.

LIB-25

—CLI

ASCI

/D
/C
JE
/G
/L
/N
/S
/P
/O
/T

/LF
/PN
/PO
/PE

Intermediate Code Table—

Intermediate
code

80 H
81 H
82 H
83 H
84 H
85 H
86 H
87H
88 H
89 H
8AH
8BH -
8CH
8DH
8EH
8FH

Built-in commands]

ASCII

RUN
DATE
XFER
DIR

RENAME
DELETE
TYPE
CHATR
FREE
MON
TIME
EXEC

POKE

Other

Intermediate

code

BOH
B1H
B2H
B3H
B4H
BSH
B6H
B7H
B8H
BSH
BAH
BBH
BCH
BDH
BEH
BFH
COH
C1H

ASCII Device number
SFDI 0
SFD2 - 1
$FD3 2
$FD4 3
SCMT 4
$MEM 5

6

g

8

9
$PTR 10

11
$KB 12
$SIA 13
$SIB 14
15
ASCII Intermediate
code

C2H

C3H
BOOT C4H

Intermediate
code
90 H
91 H
92 H
93 H
94 H
95H
96 H
97H
98 H
99 H
9AH
9BH
9CH
9DH
9EH
9FH

ASCII

SLPT
$PTP
SCRT

$SOA
$SOB

$USR1
$USR2
$USR3
$USR4

X

.OBJ
.BTX

.ASC
-RB

.LIB

.SYS

Device number

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

ASCII File mode number

255

O 00 N O i bW N

e e e
AW NN = O

Intermediate
code
AOH
AlH
A2H
A3H
A4H
ASH
A6H
ATH
A8H
A9H
AAH
ABH
ACH
ADH
AEH
AFH

Intermediate

code

FOH
F1H
F2H
F3H
F4H
FSH
F6H
F7H
F8H
FOH
FAH
FBH
FCH
FDH
FEH
FFH

Codes other than those shown in this table are expressed as is in ASCII code. However, this applies only

to 01H-7FH. The codes for some small characters and graphic characters are the same as CLI intermediate

codes; therefore, they cannot be used.

LIB-26

~ BASIC RELOCATABLE LIBRARY (RELO.LIB)

The basic relocatable library contains a collection of subroutines which are required by programs
created using the basic compiler. These routines are useful when basic program subroutines (external func-
tions, external commands, etc.) are created using the assembler.

Routines contained in RELO . LIB can only be used as basic subroutines; they cannot be executed as

independent assembly programs.

. .INTO
. .INT1
. .INT2 (Convert Floating to Fixed)

™ Function: Converts a real number expressed in 5 bytes into a 16-bit integer. The absolute value
or any decimal fraction is discarded. (Examples: 1.5 =1 —2.7>=2)
HINEO: 63, . 20 The input range is from —32768 ~ 32767
BNEEL s The input range is from 0 ~ 255
SINIBD, s The input range is from —32768 ~ 65535
Input registers: The HL register contains the starting address of the 5 byte real nurriber.

Calling procedure: CALL ..INTO CALL ..INT1 CALL ..INT2
Output registers: HL <« integer

Error processing: SHINIEOR sk, Upon overflow, CF <« 1.
o ollNARlE s s i, Upon overflow, JP ER3.
HINBER. sty Lo Upon overflow, CF « 1.

Registers preserved: All registers except AF and HL.
Note: The . .FLTO and CONST subroutines (described below) are used to create the 5-byte real number.

. .FLTO (Convert Fixed to Floating)

Function: Converts a 16-bit signed integer into a 5-byte real number.

Input registers: The HL register contains the 16-bit signed integer. The DE register contains the
starting address of the area in which the real number is stored.

Calling procedure: CALL . .FLTO

Registers preserved: All registers except AF, DE and HL.

LiB-27

CASC’ (Change ASCII)

Function: -

Input registers:

Calling procedure:

Registers preserved:

Converts a 16-bit unsigned integer into an ASCII character string and appends ODH
to the end of it.

The HL register contains the 16-bit unsigned integer. The DE register contains the
starting address of the area in which the ASCII character string is stored.

CALL CASC’

All registers except AF.

.MOVE’ (Move String)

Function:

Input registers:
Calling procedure:

Output registers:

Registers preserved:

Converts a character string from type 1 to type 2. The converted character string
is stored in an area called .WORD. (The type 1 and type 2 character string formats
are explained on page 31.)

The HL register contains the starting address of the character string (type 1).

CALL . MOVE’

The DE register contains the starting address of the converted character string.
(The address of . WORD)

All registers except AF, BC, DE and HL.

FASCX (Convert Floating to ASCII)

Function:

Input registers:

Calling procedure:

Registers preserved:

Converts a 5-byte real number into an ASCII character string and appends ODH to
the end of it. :

The HL register contains the starting ‘address of the real number. The DE register
contains the starting address of the area in which the ASCII character string is
stored.

CALL FASCX

None

LiIB-28

CONST (Convert ASCII to Const)

Function: Converts a constant expressed in ASCII code into a 5-byte real number.

Input registers: The HL register contains the starting address of the constant expressed in ASCI
code. The DE register contains the starting address of the area in which the result
is stored.

Calling procedure: CALL CONST

Output registers: The HL register contains the first address following the constant converted.

Registers preserved: None

Error processing: JP ER3

CHCOND (Character Condition)

Function: Compares the two character strings (type 1.)

Input registers: The HL and DE registers contain the strarting addresses of each of the two character
strings being comparéd.

Calling procedure: CALL CHCOND

Output registers: FLAG < (DE) — (HL)

that is,

CE=0.ZE S0 . inrininnisindes (DE) > (HL)
CR=1 ZR=0..50.. 000 (DE) < (HL)
CR=03 2B Ik 05 Ll (DE) = (HL)

Registers preserved: All registers except AF, BC, DE and HL.

ER1 ER13
ER2 ER14
ER3 ER21
ER4 ER24
ERS ER37
ERG6 ER64
Function: Error message display routine used during BASIC program execution. See the

Error Message table in the BASIC compiler instruction manual (available separately).
Calling procedure: JP ER1 (SYNTAX ERROR), etc.

LIB-29

BEERR (Basic Executing Error)

Function:

Calling procedure:

Error message display routine used during BASIC program execution.

CALL BEERR

DEFB error code (error number in BASIC)
DEFM 'ERROR MESSAGE'’

DEFB ODH

- No return made.

BABORT (Basic Abort)

Function:

Input registers:

Calling procedure:

Example:

Caution:

When a system error occurs during BASIC program execution, this routine displays
the applicable error message and interrupts execution.
The A register contains the error code (system error number).

The C register is the logical number.

])] May not be required depending
The IY register contains the starting address

i upon the type of error.
of the device table (see note 4 on page 12).

JP BABORT
LD ie2

ALl GETIC

JP C, BABORT

BEERR is a routine which displays > ER nn: message in linenumber (where nn is
the error number in BASIC compiler) when an error occurs in a BASIC program;
BABORT is a routine which displays —ERR message in linenumber when an error
occurs at the FDOS level. ON ERROR processing will be performed in both cases,
if specified.

LIB-30

. .STOP

Function:

Calling procedure:

...END

Function:

Calling procedure:

.WORD

Function:

Interrupts BASIC program execution. (Corresponds to the STOP instruction of the
BASIC compiler.)
JPH S STEP

Terminates BASIC program execution. (This corresponds to the END instruction
of the BASIC compiler.)
JPsys e END

257-byte general purpose area.

—Type 1 and Type 2 Character String Formats—

There are two types of character strings which are handled by BASIC; these should be used as appropriate.

Type 1
DEFB length

DEFB ODH

(character string length: 0 ~ 255)

LIB-31

OF LIBRARY NAMES

Name Type Page Name Type Page Name Type Page
&1L UTYL 19 ER1 RELO 29 MODECK 10CS 12
&MSG Y 19 ER2 i 29 MSG MON 2
&NMSG " 19 ER3 gt 29 MSGX i 2
&NL = 19 ER4 % 29 MTOFF UTYL 17
&PRNT " 19 ERS i 29 MULT s 20
...END RELO 31 ER6 /i 29 NL MON 2
..FLTO & 27 ER13 0 29 PMSG UYL 18
.. INTO s 27 ER14 i 29 PMSGX & 18
.. INT1 M 27 ER21 W 29 PPAGE 4 18
.. INT2 s 27 ER24 4 29 PPRNT £ 18
..STOP “ 31 ER37 g 29 PRNT MON 2
SCEIL CLI 8 ER64 o 29 PRNTS & 2
. DNAME VAR 25 ERR UTYL 23 PRTHL 4 3
. MOVE’ RELO 28 ERRX ” 23 PRTHX i 3
.WORD % 31 ERWAIT i 23 PUSHR 4 5
2HEX MON 4 FASCX RELO 28 PUSHR2 = 5
77KEY v 4 GETIC 10CS 13 PUTI1C I0CS 14
?DPCT ¢ .4 GETIL 3 13 PUTIL 5 14
?7EOF I0CS 14 GETBL i 13 PUTBL = 15
2GSW CLI 9 GETL MON 3 PUTCR i 5
7LSW « 10 GETKY o 3 PUTM 15
HEX e 8 HALT UTYL 17 PUTMX L 15
7PONT MON 5 HEX MON 3 RDDAT MON 5
?SEP CLI 9 HLHEX 5 4 RDINF A 5
ASCI MON 3 IBU1 { 6 RJOB VAR 25
BABORT RELO 30 IBU18 24 6 ROPEN I0CS 11
BEERR g 30 IBU20 < 6 SGETL YUTYT 18
BELL MON 2 IBU22 4 6 SOUND # 20
BDRIVE VAR 25 IBU24 & 6 TESW CLI 10
BINARY UTYL 21 IBUFE i 6 TIMRD MON 2
BREAK " 17 ISTACK VAR 24 TIMST 5 2
BRKEY MON 3 KILL I10CS 16 ‘"TODAY VAR 25
C&LI1 UTYL 19 LCHK UTYL 22 TRS10 CLI 8
CASC’ RELO 28 LETNL MON 2 VERFY MON 5
CASCI UTYL 21 LIMIT VAR 24 WOPEN IOCS 11
CHCOND RELO 29 LTPNL UTYL 18 WRDAT MON 5
CHKACC UTYL, 20 LUCHK I10CS 16 WRINF g 5
CHLDE i 22 MAXDVR VAR 25 XTEMP 2 2
CLEAR i 22 MELDY MON 2 ZMAX VAR 24
CLOSE 10CS 16
CONST RELO 29

Type: MON Monitor subroutine
CEl | wibvmenils CLI subroutine
IGS | eesimnie IOCS subroutin 2
IIJOTYSL Utili?y subroutiie FDOS subroutines
VAR . i FDOS common variable
RELE®: oo BASIC relocatable library

LIB-32

