—— CONTENTS —

INTRODUETION: ccoviv i ity s s v s eommomansssssnasis 1
LOADING ADBRESS :.coniiit . isinsmsmaicssoisssonos 2
RELATIONSHIP BETWEEN THE EXECUTION ADDRESS

AND LOADING ADDRESS......... 3
SYSTEM FILE GENERATION.o, 6
OEBSER . o e eis s i e a il s o « v o o nmeimom a0 5 o8 e]

LOADING ADDRESS AND EXECUTION ADDRESS

(ORG STATEMEENT) . .. cvoivnmincnenscancoronnnsnsoanos 8
SYMBOL TABLE ;. ...ccoivuueiiiiieensennanionnesssssosson 9
LINK/T COMMANDiiiiiii it 10
LINK MESSAGE EXAMPLESciiiiirnunnn.. 12
EBRROR MESSSGES oo vubhbtoes s iasus waannesssss s s 13

LINK

~ INTRODUCTION '

The linker for the SHARP MZ-80 series inputs relocatable files output by the assembler or the BASIC

compiler and outputs object files.

Relocatable files are not programs which are directly executable by the CPU, but are files which contain
information used to keep programs relocatable. They also contain global symbols in ASCII code which are

declared to link two or more program units.

The linker fetches relocation information and loads object programs into the link area in main memory
while adding the programmer-specified loading address to the relocatable addresses. When two or more
relocatable program units are loaded, units are appended to the first program unit (file), if the loading
address is specified for the first unit.

The linkage operation itself is described in detail in Section 2.3, "Linker" of the System Command

manual. However, the programmer does not need to be aware of details of the linkage operation details.

When outputting the object program (object file), it is necessary to specify the loading address and the

execution address.

LINKER
Program unit 1
\ Linkage and relocation
¢ »| Object program
Program unit 2 / Link information Object file

™y Symbol table
Relocatable files

LINK-1

. | LOADING ADDRESS | v

The loading address specifies the address at which the object program is to be loaded. When this
address is not specified, FDOS assumes the starting address which can be managed by FDOS as loading

address.

LINK TEST1, TEST2

LINK $1200, TEST1,TEST2

Links TEST1 and TEST2 and assigns the loading

address to the beginning of the area managed by

FDOS.

Links TEST1 and TEST2 and assigns the loading
address to 1200H.

The figure below shows the flow of files from the time they are linked by the linker until they are
executed with the RUN command. Numbers @ through ® in the figure denote the processing sequence.

LINK $1200, TEST1, TEST2
0000 i
Monitor
1200
FDOS
0 TEST1.RB
(o] -
O \ Load @ Lie < The linked object program
g el og in memory has an address
Relocatable files ®@
0 e TEST 2. OBJ Save format such that it is loaded
° / Link area ® and executed at address
O TEST2.RB 1200 (hexadecimal).
ST eble Object file TEST1. OBJ
Stack area 0
D000 °O
VRAM, etc.
/.
/
RUN TESTI1
ge0 Monitor @
1200
FDOS
The object program is then @C When the RUN ‘commmand is
moved to the area starting at TEST1. OBJ executed, the object program
the loading address. In this is temporarily loaded into the
case, the system displays a area under control of FDOS.
warning message indicating
that FDOS will be destroyed
and waits for a user response.
f
Stack area
D000
VRAM, etc.

LINK-2

ol RELATIONSHIP BETWEEN THE EXECUTION ADDRESS AND LOADING ADDRESS

The programmer may specify the execution address as well as the loading address when outputting an

object file through the linker.

LINK $8000, TEST1, TEST2, EXEC$8200

The above command links and loads relocatable program unit files TEST1 and TEST?2 into memory,
specifying a loading address of 8000 (hex) and an execution address of 8200 (hex).
Examples of linkage and loading are given below (numbers in circles in the figures denote the processing

steps). The first example uses a simple RUN command.

— Monitor
@ FDOS ® ‘
Control is transferred to
address 8200 after pro-
8000 . gram loading is completed.
o(% Loaded by the RUN command Object program 8200

[The object program is generated by:
LINK $8000, TEST1, TEST2, EXEC$8200 Stack area

VRAM, etc.

Memory after loading with the FDOS RUN command

Note: Any loading address or execution address is invalid for LINK /'S even if specified.

LINK-3

When the monitor is used to load the object program, its starting address in memory is designated by

the loading address. The program counter is set to the address designated by the execution address after

the object program is loaded. The figure below shows how an object program with a loading address of

1200 and an execution address of 2000

Loading address

XLow

Object program

Execution address = 2000 (hex)
Loading address = 1200 (hex)
The FDOS XFER command is useful

transferring the object program to a cassette

tape file.
Coding example:

LINK §$1200, TEST1, TEST2, EXEC$2000 -/

XFER TESTI1. OBJ, $CMT o

™~ 1200

Loaded via monitor

is loaded and how control is transferred.

Monitor

@

Object program 2000

for

Memory after loading with the monitor program

0000
Monitor

1200

FDOS

Symbolic debugger

®

DEBUG < filenamel >, < filename2 >
When both loading and execution addresses
are omitted, the system assumes system-
specified addresses for the loading and exe-
cution.

< filename2 >

Object program

Stack area

VRAM, etc.

Memory after loading with the symbolit debugger

LINK4

Execution address

- Executed with the
) G or I command

Subroutine programs created with the assembler and BASIC programs created with the BASIC compiler
may be linked using a library (see the 'Programming Utility' manual) or the BASIC USR statement.
Here, an example is given of linking an object program with a BASIC program using the USR statement.

The figure below shows how an object program is loaded and linked with a BASIC program. The area
in memory which is managed by FDOS is reduced with the FDOS LIMIT command to create a free area.
The object program is loaded into this free area with the FDOS or BASIC LOAD statement. The BASIC

program can then call the object program as a subroutine using the USR() statement.

0000
Monitor
1200
FDOS
FDOS command included in
the BASIC program which
oAt diiobioct propr BASIC program (OBJ) [~ Linked with the BASIC
statement USR ($C000)

Y FDOS command LIMIT

o

C000
O & : @ Creates a free area
outside the FDOS J

controlled area.

(Coding example:) RET

LINK $C000, TEST1, TEST2 < Stack area

VRAM, etc.

Memory after loading with an FDOS command in a BASIC program

LINK-5

SYSTEM FILE GENERATION

Multiple relocatable files can be linked into a system file for management by the FDOS.

LINK /S TEST1, SFD1; FDOSEQU . LIB Generates system file TEST . SYS by linking
TEST . RB and FDOSEQU . LIB.
LINK /S TESTI, TEST2, $FD1; TEST/O Generates system file TEST . SYS in $FD1 by

linking TEST1 . RB and TEST2 . RB.

The system file generated can be managed in the same manner as standard system programs such as the
assembler and the text editor.
2 > TESTI
2> TEST XYZ (TEST must include the processing routine for XYZ.)

When the above is executed, the FDOS reads TEST1 . SYS or TEST. SYS from floppy disk drive
$FDI; that is, the FDOS operates under the assumption that system files are stored on the master diskette.
The LINK command and the LINL/S command are compared below.

LINK LINK /S
File generated Object file System file
Grobal switches/T, /P Valid Valid
Table size specification (TBLS) Valid Valid
Loading address specification Valid Invalid
Execution address specification (EXECS$) Valid Invalid
Offset specification Valid Invalid
ORG command Available Unavailable

LINK-6

8 OFFSET

The programmer can specify an offset to reserve a free area between two object program units.

LINK TESTI1, $1000, TEST2 Links TEST1 and TEST2 so that the object program
is loaded at the area equivalent to 1000 (hex) addresses

reserved between them.

Execution of the above command is illustrated below.

0000 ? ?
Monitor Monitor
1200
& FDOS FDOS
OO TEST1.RB
O Linker
Load
> TEST1. OBJ TEST1. OBJ
Relocatable files < Offset < Offset
> TEST2. OBJ (4K bytes) TEST2. OBJ (4K bytes)
Link area
0
O | tesT2.RB Symbol table E>
Stack area
D000
VRAM, etc.
Memory after loading with the Memory after loading with the
FDOS LINK command FDOS RUN command

Note that the loading address and offset are carefully distinguished in the following command:

A 4-digit hexadecimal number preceded by a $ symbol in the first argument position is always

interpreted as the loading address.

LINK $8000, TEST1, $1000, TEST2, TBL$20, EXEC$8200

T

Loading address Offset (4K bytes) Symbol table size Execution address
(approx. 8K bytes)

Note: Any loading address or execution address is invalid for LINK /S even if specified.

LINK-7

LOADING ADDRESS AND EXECUTION ADDRESS (ORG STATEMENT)

Although a loading address can be specified with the linker, it can also be specified with the ORG
assembler directive during assembly. Assume that there are two relocatable files.

TEST1: Assembled with loading address 6000H specified. The object file will be loaded in the area
from 6000H through 6COOH.

TEST2: Assembled with loading address 7000H specified. The object file will be loaded in the area
from 7000H through 7A00H.

These are linked as follows.

LINK TEST1, TEST2

Then, the object files are loaded as shown in the memory map below and the execution address of
TEST1 . OBJ is automatically set to 6000H.

Monitor Monitor
FDOS FDOS
Linker :>
TEST1 . OBJ e s
________________ H
B R b } (7000H—6COOH) ecooli - THESER (OB e
‘EEST2 . OBJ
oot 0
7A00 :
Memory map during linking

Memory map during execution

?The loading addresses specified during assembly are valid even if the loading addresses and offsets are
specified in the LINK command. However, when no loading address is specified for TEST2 during

assembly, the offset specified in the LINK command is valid. The execution address specified in the LINK
command is valid.

LINK $5000, TEST1, $3000, TEST2, EXEC$6100

Monitor
FDOS

Control is transferred to location
6100 after loading.

6000

e

7000 o= GEd TR T

7A00

Memory map during execution

Loading addresses specified during assembly are invalid when the LINK./S command is used to generate

a system file.

LINK-8

~ SYMBOL TABLE |

Information referred to as symbols in the linker and symbolic debugger indicates globally declared
labels (that is, label symbols defined by the ENT or EQU assembler directive) in the source program. This
information is stored in the relocatable file by the assembler for use in linking with other relocatable

programs.

The linker loads label symbols into the symbol table while inputting program units in the relocatable
files. The symbol table is placed at the end of the link area; its size is set to approximately 6K bytes by the
linker unless otherwise specified by the programmer. The programmer can specify an area of more than

6K bytes for the symbol table area using the LINK command as follows:

LINK TEST1, TEST2, TBLS$20 This command links TEST1 and TEST?2 and specifies a
symbol table size of 2000H (approximately 8K bytes).

TBL$20 in the above command specifies that a symbol table of approximately 8K bytes is to be
created. In other words, the programmer can reserve a symbol table area in 256-byte units. As shown in
the memory map, the symbol table is constructed at the end of the link area.

Each symbol table entry is 9 bytes long. The for-
mat of the symbol table entry is shown at right.

Section 2.3, "Linker" in the System Command I 1] 2 I 3 I 4 | 5] 6] 7Talo
i ink this 9-byt 4
manual describes how the linker uses this 9-byte Symibol aame = pee el e
information to link relocatable program units. status
| Monitor
FDOS
Linker
Link area
Symbol table } 6K bytes
when table size
Stack area is not specified
VRAM, etc.

Linker memory map

LINK-9

LINK/T COMMAND '

The LINK /T command is used to display the contents of the symbol table after program linking is com-
pleted. It displays a symbol name, its absolute address (in hexadecimal representation) and the definition

status for each symbol table entry. The user can detect symbol definition errors by checking the defini-

tion status.

The LINK /T command has two basic formats:

LINK/T TEST1, TEST2 Links TEST1 and TEST2 and displays the symbol
table on the CRT screen.
LINK/T/P TESTI1, TEST2 Links TEST1 and TEST2 and prints the symbol table

on the printer.

— The photo at right shows link and symbol table

information displayed on the CRT screen with 2>LINK/T UNIT-#1,UNIT-#2,UNIT—#3
Linking UNIT-#1.RB
the LINK/T command for the three program £nd 3EmeBiis

2.
units shown on Page 12. Undefined symbols are

labeled "U".

A
A
B
A
A
3.RB
A
A

nn AA'DA&‘UAJ&

#we AN NP PO
$5 NW WD DO

$
$
§
$
$
3$
3.J
s
=3
2

TR Lo oy,
A0 O e .
®7 300 1 0 1 0

00« WU |up | W
0Dt

— Symbol definition messages are listed below.

Message Definition

Undefined symbol (address or data)
Multi-defined symbol (address or data)
Cross-defined symbol (address or data)
Half-defined symbol (data)

EQU-defined symbol (data) J

XX =Ed

No message is attached to symbols for which an
address has been defined. U, M, X and H indicate

error conditions.

— If global switch /T is not specified, only error symbols (whose definition messages are U, M, X or H)
are displayed or printed.

LINK-10

Linking M-LANG#1.RE
Top asm.bias $4AEE
End asm.bias #5472

Linkina M-LANG#Z.RE
Top asm.bias $5478
End asm.bias $5R14

Linking MONE2U.LIE
Top azm.bias $5Ei4
End asm.bias $SB14

Save M-LANG.OQRJ
Loading address 54
Execute address
Bytesize %1114

Dol

Symbol table

LMEG SZEE

1HEXO S740
4HEYD 5774
TFEED SZD4
@ERRZ D0 @38a&s
RORIVE 4F2
BFFLG SADT

EREEY H527

BWRIT SEAd
CLRF= 4CFa ZLEF
COMMON R | COMEL
CONT® S35 CR

oI HESE oM
ERCODE 4CFZ ERJMF
ERTRE 4I0FZ EZCFRT
GET1 S40F GET1E
GETA4 5726 GETEY
H= 0 oa@apn IEUFE
LEST 4A9F LISTA
L I5FS S294 LoaD
LFENT SAZD MAINX
MEMRY

VERIFY
WRE®A
WRi4
XZHEX
XGETZ22
LAF
IIE
ZIR
15K

VRFONT
WRE 1
WRES
XFER
XGET4
ZAFC
IDEC
ZIX

il

i}
il

i

have been sorted as may be seen from this listing.

AEEUM
1 BETEL
5 BREAD
£l ELUFFR
ju CLEF1
= CLEAR
6 COMFR
C
A
1
i

Dt s = BRGSO e e >

CTBL
DR
ERJFAD
FCMD
RETZ
GETL
JRTBL
LISTM
LOOK S
MAINZ

it
DA

oTOT N W

Ll T B O]

il

The listing below shows a printout of link and symbol table information.

4'F/
40ER

oA

=M

DA DR, B) B R v

5]
7
A
7:
A
A
A
&
El

RO e o g B Y s
L e B 1 N OO Y SR R B U |

oo on o
> > D>

LPRNTS
25ET

The symbol table entries

PRKEN
@ERRZ
ARST7
BFDOLM
EREAK
ELZY
CLEBF2
MO

CONT
CUR=0
EFREE
ERSEL
FOERR
GET4

GOTO
i I
LISTN
Lok
MELDY
MES 14

FOTFE
FROG

FTAEL
READY
SACT

SEARLC
SOUND

WRITE
WRE =
LI1HEX
XGETZ
I2GTE
IBCC
ZHLC
ZPC

T

H

o
D&

L
il

i

(Note: This listing is not related to the programs on page 12.)

LINK-11

First program unit loaded (UNIT—#1)

TMDLYH : LD HL, START
COUNT : ENT
DEC HL
LD AH
CP COUNTO
JR NZ, COUNT
LD A1
CP COUNT1
JR NZ, COUNT
CP COUNT2
JR NZ, COUNT
RET
PEND : ENT
DEFM 'TMDLYH'
DEFB ODH
COUNTI: EQU 00H
COUNTO : EQU 50H
END

Second program unit loaded (UNIT—#2)

TMDLYL : LD HL, START
LOOP1 : DEC H

LD AH

CP COUNT

JR NZ, LOOP

RET
PEND : ENT

DEFM ’TMDLYL'’

DEFB ODH
START : EQU 1000H
COUNT : EQU 00H

END

Third program unit loaded (UNIT—#3)

INPUT : CALL 001BH
CALL TMDLYL
CALL 001BH
LD HL, START
CP ODH
JR Z, END
LD (HL), A
INC HL
JR INPUT
END : JP 0000H
COUNT2 : EQU 12
END

LINK-12

~ LINK MESSAGE EXAMPLES ks

Refer to photo on page 10.

"START" X
START is not defined as an address in the
first program, but is defined as data in the

second or subsequent program with the
START: EQU statement.

Note:
The EQU statement should be placed

at the beginning of the program unit.

"COUNT2" H

COUNT?2 is not defined as data in the first
program, but is defined as data in the third
program with the COUNT2: EQU state-

ment.

"COUNT1" D
COUNT1 is defined as data (D indicates no

error condition).

"COUNT" X
COUNT is defined as an address in the
first program while it is simultaneously

defined as data in the second program.

"PEND" M

PEND is defined as an address in the first
program while it is simultaneously defined
as an address in the second program (dupli-

cated definition).

"TMDLYL" U
TMDLYL is neither defined as an address
nor declared with the ENT directive in any

other external program unit.

~ ERROR MESSAGES

The error messages issued by the linker are described in the System Command manual. Here, only error

messages which require particular attention are described.

no memory space
Indicates that the symbol table is full; that is, that there are too many symbols to be cataloged. The
symbol table size is set to approximately 6K bytes by the linker unless specified by the programmer.
It is necessary to specify the TBL$ argument in the LINK command to increase or decrease the

symbol table size.

memory protection
Indicates that the link area is inadequate, that is, that the linked data has reached the symbol table

area located at the end of the link area. In this case, MLINK command is available.

il data
Indicates that the data read from the specified relocatable file has an illegal link format. This condi-
tion may be caused by a hardware read error in the floppy disk drive or by an assembly error in the

source program.

LINK-13

2) " ep s ‘
abnes 3T damol Aol fses

LR LR
{ i {s3en 8 o
i oy ot ol harid
A‘J :hll‘

fodive adl by

sicheilave « D 144

i it ,:'sesm st sl fad’ ‘Q‘_\fi S BRgseE

NE oﬁsb@xh

SErE
LE g &)

b
&
33

®

sl w1 noiteaile salinidisg siupsr doide o

TR st oy

s :m A)w; Hd st sldes Sedmw sl dsld 2siey
3 g Ao s
M dnsmugis 2AST =i adge o) Geessose = il

W

¥

ISIFXOTGYS OF 192 21 oxiz skiel lodnuw

- 9%l sty doddmve

whsvmq £ IDTIR
Y 5 & 3 3l stoupobunt o sows dnll o tedy ssinaibel
TM sl i al seve dAnil S5 30 Bete oiff 18 hstsool s

9443 5 !;
v 9t o7} best aleb 9ty 1ufd estsvibai
ﬁf;tm yore bewr svswbed @ ‘{{? buamsss od e anh

AARREIROMY SUIG

