Start

r\
K—/.

Want to know the basic prin-

ciples of the assembler, text yes

GUIDE TO USE OF THIS MANUAL

editor, linker and symbolic
debugger?

=
=]

Want to know the basic yes

!

=)
=
(q=]
=
=
o
o
=
D
—
(7p)
>
(Fp)]

See Sections 1 and 2 (pages 1 — 13).
(Readers may skip these sections.)

principle and specifications
of the MZ-80 series FDOS?

=
]

Want to run the computer yes

1

See Section 3 (pages 14 — 18).
(Readers may skip this section.)

immediately?

=
o

Want to develop programs b

See Section 4 (page 32 and 37). Read the explanations
about the FORMAT and COPY commands.

under FDOS?

Want to link with programs yes

=

Read Section 4 (pages 19 — 61) throughly.

generated by the BASIC
compiler?

=}
o

Want to add new commands yes

R

Read Section 4 (pages 19 — 61) throughly, as well as

the following manuals:

BASIC Compiler

Library/Package

"EXAMPLE OF PLOTTER CONTROL APPLICATION"
in Programming Utility,

to an FDOS library?

=3
o

S a s

Want to define user-supplied yes

!

Read Section 4 (pages 19 — 61) throughly, as well as
Library/Package and "LINKING ASSEMBLY
PROGRAM WITH FDOS" in Appendix.

I/O devices in FDOS?

/—5<>

Want to refer to the system

Read Section 4 (pages 19 — 61) throughly (especially
the explanations about the LIMIT, ASSIGN, LOAD and
STATUS commands). Read "User I/O Routine" in
Appendix.

error message?

no

End

o
e

SYS-i

¥

See ''System Error Messages' in this manual. (page 57)

—— CONTENTS ——

1. THE MEANING OF "CLEAN COMPUTER" 1
2. SYSTEM PROGRAM ORGANIZATIONciuiiiiinnnnnn.. 3
2.1 ; Texd Bdstor Bunclions . sess sl sy . o ol bR el s e i 4
2.2 Assembly Procedures. ..., Bl et 0 On LR TOTIRE S ey SRR)
Ze3lnkersrorrrreiir oo ST e T e BT e TR i 9
24 SymbeliciPebugger: »ifsgeont o v Ea et i e S i T 11
2.5 PROM Formatter il uerth o et TG st T amiiiean '3
JLEDOSORGANIZATION odaafalun L Lo osidanb o loian o i s 14
3l -<BOOTEINKEE s cron wiripmainal i S 00 L Lot s R B 15
P AEE (08 NSRRIt . e NI SBEARIE et o S D 15
3.3 Dynamic:Segmentation . el ol inguel ol siiiiis it | 74
4. FDOS COMMAND USAGE ot | o, Ulsgn o0 fis & 19
4.1...Program.-Development UndemEDOS .. . | i demlonan o e o 19
4.2 BPDOS Command CodingiRullesioe i oo e s g i st 20
4.2.1 Command line formal®e L. io b L coobioiai e ay 20

400 -*Bilenagie - 0 L0 T ERE 0 S s iR e e e 20

4.2.3 -Filemedes: . w0000 .. [VgD et T 21

4.2 4 File attributes el G0 e et S 21

4:2.5 - Biletypes . « o oniailid e e el o aige Daiie Al e 2

432061 ¢ Wildeard:-charactershafe. L oo L ool el bol G ianiaiis il 22

4.2.7 Drive number and volgme siumber ... L. .ol naii o s i L 22

42,8 Basic device name ... SHEEN L ot T S e 22
4.2.9....Auxiliary-devicenamiess sl Tegs s e TReiaa o e e 23

e LY SWIECEN T N R e S e e 24

449" LilwDefanltrassumptionSia®ieats by ol ol e i e Bl 25

4212 Argumentsonmiel el e RIS Selee D o 26

4.3 ‘Using FDOS Conmands’, [e s, o s o nsemitin e o 2
430 ASM ooy el BRI LT B Sl Rl S 27

4:3.2. -« ASSIGN: ivv s v sl REUEIG il [orn NG AR | R M 28

4.3.3 BASIC 00 it i S e e 28

434 BOOT 000 Bl s sevmmam b SR ssi s o 29

21355 FCHATR op ¢ 5 55 3 s 300 LGSR0 e NG R TR © 29

SYS-ii

4316 - CONVIBRAN L. SR v L s pg samas s B e s 8 s ks 30

ARNT O e DR L L s s e s WIS T 32
R D 1 2 T S IR VSR A AP, 32
A0 MBIRIIG s s e s s s p e £ 6 s B b e 33

S LONMBERIE . oy s st v s s s vadeE s 88 B omwes 34
s L e S L R 35
e D LI A e R R N S e R 36
Q3R] SEENBE ot S R L s seseniins: v e s 0 16 o rasiene 36
A BORIMIAT oo oot i s's 5 5« s s wvieonie 0w e e e 37
AN HEBEE Ll e e G e s 2 s 5 e e 38
AR MEEIRNY o i s s s R s R 8§ e & s 39
43T IBRIARY: o i e B e ks 5 5 G 8 8 8 S 8 s 40

7 a2 B R E1Y 11 et SOt e i NI L TS 40

A ORI s e e i s G e & v o w0 @ e v % § 41
SO0 [e R R SR S S R D 42

A DN IINIR s s 2 € SRR L siiens & 5 6 6 6 5 @ e 0 86 s 42

e o) Y (0N R S g 43

AR OSHEAGE L SO R e s R d R AGER A b 4
RN 81207 < o R U I T SRR W S S A 44
435 BRGNS ¢ ¢ x s e s e A 45
4359 GRRIBNIANIE v o1, b R s o s s 6 e s v o e e 45
OTREINRG o i e e v e 5 8 e e s e e s e e e 46

Vo R i A) G O s T L et D e 47
%R R T 11 SRR T o M SPE S C R 47
4SS0 - Cotons sl G L e e e § R R 49
el) DONEREE S WIS R SRR 49
Ay) N Tl v s e« w e e ne e 50
AR XEIBIRE. it s o RIS s s s s 6w e e e 50
4:4:-FPDOS:CommandiSummaty: i oaloiliiv. s a v e s se s qumsde o s 6o e 52
455 Sy S te B RO RIVIESSATES) i sl IR 0 s 54 5 s s mseiieni o 4 8 8 5 8 s 57
5. DISKETBEHANDEEING . .. i h oo i ossvmeviows nossonanse 59
6. MUTUALCONVERSION:00 i iseissunsisnisessswvis 60

SYS-iii

e
5%

&
X

I - s
e P | “r\

i
o

i
=

%Y
‘
C

“ O
o * B o

"3
iy

o

£o

4

\ T

i
i
.
p =
.
s .
+

~ 1. THE MEANING OF "'CLEAN COMPUTER"

Three important developments accompanied the shift from the boom in microcomputer kits to the

entrance of personal computers.

(1) Mass production reduced the cost of RAM and ROM devices so that they became readily available.

This .development eliminated the need to devote great amounts of time and effort to compressing
system functions to the maximum extent possible to conserve valuable memory for user programs. Now
it is more important that system programs be written and managed in a structured manner and that their
overall usefulness be raised. It is more and more apparent that what the user comes in contact with is not
so much a unit of hardware as a software reinforced computer.

(2) Compact, reliable external memory units with large storage capacities became available.

Floppy disks and fixed disks are currently the basis for system configurations, but sooner or later
charge coupled devices and magnetic bubble memories will be used in this capacity. This suggests that
there will be increasing stratification of programs culminating in operating systems, and that the efficiency
of systems will also increase. From the user’s point of view, this means that a wide variety of programs will
be readily available for use.

(3) The development of various peripheral circuit LSIs has made possible realization of efficient inter-

faces with high performance terminals.

This means the main concern of the user in the future will be with how many functions are provided
in a system and how useful they are. In terms of the contents of the system, the main concern will be in
developing operating systems capable of organically combining terminals and program processing with
a minimum of effort on the part of the user. It is even possible that real time processing of multiple tasks
and jobs on a level approaching that of minicomputers will become possible with the operating systems

of microcomputers.

As is apparent, it is extremely difficult to predict the extent to which computers will evolve as integ-
rated circuit technology and program language theory become widely dispersed. This tends to undermine
the belief which some people have that rapid changes in hardware result in good computers.

Although the name '"clean computer" has been given to the MZ-80 series, computers are basically clean
in principle. As the field of personal computers opens, the concept of embedding a single language,
BASIC, in ROM has become a hindrance to use of full computer capacity. Out of consideration for the
many different types of service which will be required by users as yet-to-be developed technology comes
into use in the fufure, it will be necessary to preserve the cleanliness of the computer to the maximum
degree possible to minimize constraints placed on its use. The ultimate ends to which computers are
applied will be determined by the junction of technological possibilities and user requirements; the only
other limits imposed are those which are inherent in the fact that the computer is nothing more than a
machine. In order for computers and users to get along well together, it is necessary that computers be
designed with a minimum of constraints so that they can be suited to user requirements, rather than the
other way around. In other words, the usefulness of the computer and the efficiency of the service it pro-

vides depends on how clean it is.

SYS-1

The explanations in these publications are intended to show how flexible the MZ-80 series of computers
is in terms of system development. A tape-based program development system is provided to enable inex-
pensive development of small programs; the floppy disk operating system (FDOS) was developed to assist
with the creation of large programs which require large quantities of memory. The functions and configu-
ration of FDOS are suited to a range of applications approaching those provided by a low level minicom-
puter. We think that the software technology and utilization procedures applied in this system will open a

new world of possibilities for personal computers.

SYS-2

2. SYSTEM PROGRAM ORGANIZATION

SHARP MZ-80 series system programs include an assembler, a text editor, a linker and a symbolic

debugger. They are organized to execute a sequence of assembly phases.

Linker
Program relocation
and linkage

Text editor o Assembler 5
Source program editing Assembly

Symbolic debugger

Debugging Object program

Fig. 2-1 Assembly phases

Figure 2-1 shows the assembly process, which consists of creating source programs, assembling them,
relocating and linking the assembly output and debugging them.

One cycle of the phases in the left half of the figure makes up a program creation stage. The pro-
grammer prepares a source program with the text editor and creates a source file, then inputs it to the
assembler. The assembler analyzes and interprets the syntax of the source program and assembly language
instructions into relocatable binary code. When the assembler detects errors, it issues error messages. The
programmer then corrects the errors in the source program with the text editor.

After all assembly errors are corrected, the programmer inputs the relocatable program (the
relocatable binary file), output by the assembler to the symbolic debugger. The symbolic debugger reads
the object program into the link area in an executable form and runs the program. During the debugging
phase, the programmer can set breakpoints in the program to start, interrupt and continue program exe-
cution, and to display and alter register and memory contents for debugging purposes. If program logic
errors and execution inefficiency are detected during the debugging phases, the programmer reedits the
source program using the text editor.

After all bugs are removed from the source program, the programmer loads and links the program
unit(s) in the relocatable file(s) and creates an object program in executable form with the linker.

Each system program always generates an output file for use in other system programs. Figure 4-1
shows the interrelationship of the system programs.

As shown above, the program development phases are executed by four independent system programs.
By assigning the system functions to separate programs, the MZ-80 series can accomodate large-scale,
serious application programs, thus enhancing its program development capabilities. "PROM formatter"
is provided which punches object programs into paper tape in several formats for use with various PROM
writers now on the market.

The system program commands are listed in the last part of Appendix.

SYS-3

2.1 Text Editor Functions

The major functions of a text editor are to insert, delete and modify characters, words and/or lines.
If the editor does not allow the programmer to use these functions interactively and easily, he will have to
devote more effort to editing and modifying programs than to executing them. To alleviate this problem,
SHARP uses a command format which is almost perfectly compatible with that of the NOV A minicom-
puter series from the Data General Corb.; this has been refined through the support of many uses.

‘The most important concern of the programmer in conjunction with the text editor is the concept of
the character pointer (CP) and its usage. During line-base editing, the CP is situated not on a line but
between two consecutive lines, as shown in Figure 2-2. Therefore, the location to/from which a line is
to be inserted/deleted can uniquely identified. If the CP was located somewhere on a line, two locations
would be possible; that is, before and after the CP. The J and L in CP move commands are representative
commands which use this interline pointer concept.

During character-base editing, the CP is situated not on a character but between two consecutive charac-
ters. This permits close editing. The programmer will become accustomed to the text editor quickly if
he is aware of what commands use the interline CP and what command use the intercharacter CP concept.

During normal editing sessions, several commands are combined to carry out an intended task. Such
commands can be placed on a line separated by separators so that the programmer lists them as they

come into his head.

The delimiter “ = " is entered when |CTRL| + are pressed.

B = 5M = 3J [CR]

1 CP i < Top of the edit buffer
Two or more commands can be D (beginning of the text)
specified by separating them with 5M [SP]
the delimiter = . A
CP i Line 1
4
H
2J=5C7=3 P> [CR]
L
3J D
[SP]
C7= 3
B (Line 2 Edit buffer
P> N\
Search for ADD starting at
the beginning of the edit buffer |CP CE ?
L D
B»SADD-»L-»ZT D
5P » Line 3
i ne
B

Fig. 2-2 Character pointer movement

SYSs-4

2.2 Assembly Procedures
As the programmer becomes familiar with the Z-80 instructions, he is able to construct programs more

easily, even though he may feel difficulty in grasping the structure of large programs. At this stage, it is
not hard for the programmer to handle other microprocessors such as the M6800 and the F-8 with the
help of good reference manuals. One of the major reasons for this is the operating principles and architec-
ture of most computers tend to be alike. It is therefore possible to develop a general purpose assembler
for such micro-processors. In this section, the technique employed in the MZ-80 assembler is described.
This will serve as a model for designing general-purpose assemblers.

The basic operation of any assembler is the interpretation of statements. It is therefore important to
establish a proper statement coding format. Figure 2-3 shows an example of a coding format, used in the
MZ-80 assembler, which is familiar to humans and which is easy for the computer to interpret.

Scanning the statements in this format, the assembler:

(1) Recognizes labels and stores them into the label table,

(2) Recognizes fields and assembles object codes,

(3) Generates an assembly listing, and

(4) Generates relocatable binary code.

Step (2) differs from one processor to another. The assembler constitutes a general-purpose assembler if
it can perform this step flexibly. As the nucleus of the process for step 2, an instruction list (Figure 2-4)

and a 2-dimensional operation table (Table 1) are introduced.

-/

Label :| Mnemonic [—| Operand 1 |,] Operand 2 | ;| Comment
/:‘;g\ iami—
1
Field 1 Field 2 Field 3 Field 4 Field 5

Fig. 2-3 Assembler coding format

SYS-5

The symbol # in the instruction list represents a register and the symbol $ represents a label or numeric
value. The assembler identifies each instruction by matching the read assembly statement with this listing.
As a result of this match, the assembler produces the major portion of the op-code, the byte length of the
instruction and its atom type. An atom type is one of the numbers identifying the instruction groups of
the Z-80 instruction set. As is seen from Table 1, there are 48 atom types; these are sufficient for newly
defined instructions.

The operations to be performed for each atom type are designated by a 16-bit flag field. For atom type
01, for example, flag bits 0, 3 and 4 are set, indicating that the operations identified by these bits are to
be performed in that order. The control words identified by the set flag bits specify the actual operations
to be performed. Flag 3 indicates that this instruction must be a 1-byte instruction, that it must shift the
data to the left 3 bits, and that the size of the field must be 3 bits or less. Similarly, flag 4 indicates that
this atom type represents the LD r,r’ operation.

Let us examine atom type 18. The set flag bits are 0, 1 and A. The control word for flag 1 is all zeros,
which means no operation. Flag A indicates that the instruction requires address modification (address
procedure) and that the address field must be not longer than 16 bits (size of the field). Thus, atom type
18 represents instructions such as JP nn’ and JP NZ, nn’.

The above assembler operating procedure is summarized in Figure 2-5. Most of the assembly operations
involve table references. In fact, the assembler uses a register table, a separator table and a label table
during the assembly process, in addition to the instruction list and the 2-dimensional operation table. If
these tables are redefined to conform to a new instruction set the assembler may also be used as a cross

assembler.

01 0000 :

02 0000 : INSTRUCTION LIST

03 0000]

04 0000 SYMP : ENT

05 0000 4C442023 DFFM 'LD # #’ ;LIKELD B, C

06 0004 2C23

07 0006 F1 DFFB F1H F delimits the instruction pattern. 1 indicates the length of
the instruction in bytes.

08 0007 40 DFFB 40H Main portion of the mnemonic code

09 0008 01 DFFB OlH Atom type

10 0009 4C442023 DFFM ’'LD #, (IX$)’ ; LIKE LD A, (IX+15)

11 000D 2C284958

12 0011 2429

13 0013 F3 DFFB F3H 3 indicates the length of the instruction in bytes.

%g 88%2 18(? 6 ggg‘g gggDH DD4600 is the main portion of the mnemonic code.

16 0017 03 DFFB 03H Atom type

17 0018 4C442023 DFFM ’'LD #, (IY$)’ ; LIKE LD B, (IY+AFC)

18 001C 2C284959

19 0020 2429

20 0022 F3 DFFB F3H

21 0023 FD46 DFFW 46FDH

22 0025 00 DFFB OOH

23 0026 03 DFFB 03H

24 0027 4C442028 DFFM ’LD (IX$), #’ ; LIKE LD (IX+23), A

25 002B 49582429
26 002F 2C23

27 0031 F3 DFFB F3H
28 0032 DD70 DFFW 70DDH
29 0034 00 DFFB OOH
30 0035 04 DFFB 04H

Fig. 2-4 Instruction list (part)

SYS-6

N’

Table 1 Two-dimensional operation table

o Flags (analyzed and processed in ascending flag bit number order)
Atom Deseription o Ry sl g oWhe CSDUE F
00 Reserved |
01 LD # # 1 L)1
02 LD #$% 1 1 ik
03 | LD # (IX+$) LD # (IY+3$) 1 T 1
04 LD (IX+$), # LD (IY+$), # Ll 1.1
05 LD (IX+$),$ LD (IY+$), $ Ll 1]
06 LD A, ($) 15 1
07 LD ($), A 1 i
08 LD BC, § etc. TR0 1
09 LD IX,$ LDIY,$ 1 1
0A | LD HL, ($) T |5 1
0B | LD BC, ($) etc. 15 1
0C | LD (), HL 1 1
0D LD ($), BC etc. 1 1
OE | ADD A, #etc. T 1
OF ADD A, $ etc. 15[1
10 | ADD A, (IX+$) etc. I T 1 1
1 INC #etc. 1 1
12 | INC (IX+$) etc. g 1
13 RLC #etc. 1 1
14 | RLC (IX+$)etc. 8 e 1
15 BIT $, #etc. 1 1 1
16 BIT $, (HL) etc. 1 1
17 BIT $, (IX+$) etc. 1 1 1)1
18 JP NZ, § etc. Ll 1
19 JR C, $ etc. T 1
1A JR $§ DINZ §$ 1 1
1B SUB #etc. 1 1
1C SUB § etc. 1 X
1D | SUB (IX+$) etc. 1 1 1
1E RST $ 1 1
1F IN A (%) 131 1
20 | IN # (C) 1 1
21 OUT (%), A 1 1
22 | OUF {0). % T 1
23
24
/‘ //
|
2F
ADDRESS PROCEDURE 1 1 1
MUST BE SINGLE i | R R 1l
MUST BE ADR-2 1
el 1
@ 1ol 1
& LEFT SHIFT POSITION
= 1 1 1
]
o
= DON’T CARE
% EQUATION PROCEDURE 1 Ll
= LR 1
el] 1
SIZE OF FIELD
Ll 1
1

SYS-7

((START)

L LOC<0 j LOC (location counter)

[Read statement 1

END state~~1°
ment ?

yes Pass 1? L

Wait next pass
” Reference instruc- ”
yes tion list

Label?

no

Extract flags

yes
Store label into
label table

Reference instruc-
tion list

Address no
processing?

1

Perform register/table reference,
pattern conversion, shift and
other operations as specified
no by the control words

Label

lLOC«—LOC+Instructi<ﬁI
length

reference?

Address modification
(decimal-to-binary
conversion) :
“ Reference label tablel] (hexadecimal-to-binary
conversion)

[

[Assemble object COd:I

= +instruction
I length |

Pass 2?

[L Construct CRT listing]] Construct printer S,°,’;{§‘c‘a?a"df§ {,ic,s;;
hsﬁng format

Fig. 2-5 General assembly flow (excluding assembler directive processing)

SYS-8

2.3 Linker

The linker loads and links two or more program units using external symbol referencing instruction
from relocatable files and generates absolute binary code in the link area and saves it into an object file.
The relocatable files contain control frames and external symbol information. The linker resolves external

symbol references and relocates the program units as described below.

(1) External symbol reference resolution

The linker refers to the symbol table when resolving external symbol references (see Figure 2-6). The
symbol table contains a 9-byte symbol table entry for each external symbol. A symbol table entry consists
of a 6-byte field containing the symbol name, a 1-byte field containing the definition status, and a 2-byte
field containing an absolute address with which the symbol is defined or a relocation address.

When the linker encounters an external symbol reference while loading the program unit from a reloca-
table file, it checks to determine whether the symbol has been cataloged in the symbol table.

(1) If it has not been cataloged, the linker enters it into the symbol table as a new undefined symbol,
loads the relocation address into the symbol table entry and loads code FFFFH into the operand
address of the instruction in memory.

(2) If it has been cataloged and defined, the linker loads the defined absolute address into the operand
address in memory.

(3) If it has been cataloged but not defined, the linker moves the old relocation address in the symbol
table entry to the operand address in memory and loads the new relocation address into the symbol
table entry.

Thus, the linker chains undefined references to each symbol and, when the symbol is defined, replaces
all reference addresses with the defined absolute address. In other words, when an external symbol defined
by the ENT assembler directive appears in the control frame, the linker enters the symbol into the symbol
table as a defined symbol and replaces all preceding operand addresses chained in memory (terminated by
FFFFH) with the absolute address defined. The programmer can examine the definition status of the
symbols using the table dump command.

An example of external symbol reference resolution follows. Assume that three program units are to be
linked and that each unit references subroutine SUB1 in the third program unit (see Figure 2-8).

When the first CALL SUBI1 instruction is encountered in program unit 1, the linker enters SUB1 into
the symbol table as an undefined symbol, loads the operand address (relocation address 5001H in this
case) into which the value of the symbol is to be loaded into the 2-byte value field of the symbol table
entry and loads the code FFFFH into the operand address in memory (see Figure 2-8(a)).

When the CALL SUBI instruction is encountered twice in program unit 2, the linker chains together
their operand addresses which reference SUB1 (see Figure 2-8(b)). When SUBI is defiend in program unit
3, the linker designates SUB1 as a defined symbol and loads all operand addresses referencing SUB1 with
the defining absolute address. The end of the operand address chain is identified by the code FFFFH.
Figure 2-8(c) shows that SUBI is defined by absolute address 5544H. When the linker subsequently en-
counters a CALL SUBI1 instruction, it immediately loads 5544H into the operand address of the instruc-
tion since symbol SUB1 has been defined.

SYS-9

0000 Monitor
12A0 FDOS
Linker
Loading area
} Link area
}Symbol table area
Stack area
FF00 Reserved

Fig. 2-6 Memory map for the linker

diis

6 | 7 F &9

Symbol name

NN ———
Definition Address
status (value)

Fig. 2-7 Symbol table entry format

Program unit 1 !
) »5000{ CD | FF | FF |« Identifies the
) location referenc-
15 ing an undefined
b symbol for the
first time (serving
as an end mark).
l
END
L['susi [ozfoi[s0] 5B 0l
This code indicates that
the symbol is undefined.
- @
Program unit 2 2
2 5000| CD | FF | FF |\
CALL SUB1 ¢
: 15110 cp | o1 | 50 \
¢ Operand
CALL SUB1 [—=>5310| CD | 11 [51 | addresses
R R referencing
the symbol
END are chained
together.

Program unit 3

I

suB1 [o2[11]s3}¢

l

SUBI1 : ENT

XOR A

(®)
5000{ CD | 44 | s5
TR
— s110] cD | 44 [55 D
5310] cD | 44 | 55
5544 AF

END

L—»| SUBI |00]44[55

This code indicates that
the symbol is defined.

©

Fig. 2-8 Example of external symbol reference chaining

SYS-10

(2) Program relocation

The linker relocates instructions referencing external symbols while linking the programs. For instruc-
tions which reference internal symbols and for which relocation addresses are generated by the assembler,
however, the linker produces absolute addresses for the symbols by adding bias to the relocation
addresses.

Thus, the linker generates absolute binary code in the link area in an executable format which is de-
pendent on the bias specified by the programmer when the program unit is loaded. When creating an
object file, the linker saves the absolute binary code from the link area in the file together with its loading

address and execution address.

2.4 Symbolic Debugger

The symbolic debugger inputs relocatable files under the same input conditions as the linker except
that it presumes that absolutable binary code is loaded into the link area in an immediately executable
form. The symbolic debugger permits the programmer to debug his program while running it.

With the symbolic debugger, the programmer can run a program, interrupts its execution at specified
locations and check the system status at these points. The programmer specifies the breakpoints at which
program execution is interrupted. When a breakpoint is encountered, the symbolic debugger saves the
operation code at the address set as the breakpoint in the break table and replaces it with an RST 7
instruction (FFH) (see Figure 2-9).

The RST 7 instruction is a 1-byte call instruction to address 38H in hexadecimal. Its operation is as

follows:
(SP.— 1)< PCu, (SP —2) <« PCe
PC < 0038H

Hexadecimal address 38H (in monitor ROM) contains a JP 1038H instruction which transfers control
to the breakpoint control routine in the debugger.

Each breakpoint is associated with a break counter. A break is actually taken when the breakpoint is
reached the number of times specified by the break counter. Before the break count is reached, execution
is continued with the original operation code saved.

When a break occurs, the debugger saves the contents of the CPU registers in the register buffer and
displays them in the screen. When the program is restarted, the debugger restores the contents of the
register buffer to the CPU registers and pops the break address.

The programmer can specify a maximum of nine breakpoints and a maximum break count of 14 in

Saved OP code Replace
Breakpoint address \

(label symbol) FF

decimal.

<— Breakpoint
is set

Break count Variable count

Break table entry

; Object program
Fig. 2-9 Breakpoint setting and breakpoint table format

SYS-11

The symbolic debugger has indicative start and
memory list dump commands in addition to the
breakpoint setting command, execution command

b

memory dump command and register command.

=
A
E
A
T
4

The indicative start (I) command displays contents
of the CPU registers with which the program is to
be executed for confirmation before actually

transferring control to the address designated by

the program counter (PC) displayed. For example, The above display shows that the program is to be started
when an I command is enterd, the display shown in at address 7500 (hex) with the CPU register values shown.
Figure 2-10 appears on the screen. When the pro- Fig. 2-10 I command example
grammer pressed after confirming the CPU

register contents, the debugger initiates an indicative start as shown in F igure 2-11.

Register buffer
General-purpose AF BC DE HL ’I}'{le debu%ger restores the corétents_olf
ist AF'BC’ DE’ HL! the general-purpose registers and special-
iy Z-80 CPU purpose registers SP, IX, IY and I, then
the value of the PC and initiates pro-
Special-purpose == gram execution.
registers PC

Fig. 2-11 I command operation

The memory list dump (D) command displays the machine code in the specified memory block with
one instruction on each line.

The symbolic debugger permits the programmer to symbolically specify addresses as shown in Figure
2-12. With symbolic addresses, the programmer can specify any addresses in the program wherever the
program is located in memory.

The programmer can specify the following types of addresses symbolically:

(1) Addresses represented by a symbol

(2) The address of an instruction 1 to 65535, lines away from the address represented by the symbol

(3) An address *1 to 65535, bytes away from the address represented by the symbol

Of course, the programmer can also specify memory locations with absolute addresses.

For example, the program unit whose source program is shown at the left of Figure 2-12 is loaded into
memory by the debugger starting at hexadecimal address 7500, execution of a D command will display

a dump of the memory block as shown at the right
in Figure 2-12.

*DD S
START : ENT 2289
756B
XOR A
LD (? TABP), A
LD B, A
MAINO : ENT
LD A, OFH

Fig. 2-12 D Command

SYs-12

2.5 PROM Formatter

The PROM formatter generates formatted absolute binary code and stores it into paper tape under the
PTP control. It is the system backup software used to transfer object programs to the PROM writer.
Currently, the following paper tape output formats are supported (see Figure 2-13):

(1) BNPF format: Britronics, Intel and Takeda

(2) B10OF format: Takeda

(3) Hexadecimal format: Britronics, Takeda, Minato Electronics

(4) Binary format: Britronics

The variety of tape formats supported by the SHARP PROM formatter extends the application range
of programmable ROMs.

format 2?2 T
format list

: BNPF (Bri?htronics RPG-8764)
‘hexadec ima

BUPE"Y(Inte1 MDSSEE) ;

‘BNPF (Takeda T318.28> Fig. 2-13 Paper tape output formats

[a)
B
(¢
D
E
F:
G:
H:
S
£

The PROM formatter is made up of format, the PTP and the PRT controls (See Figure 2-14). These
enable the programmer to perform foramt conversion.

The formatter checks parity in one of three modes (even parity, odd parity or no parity) when reading
paper tape. In the formats using ASCII code (BNPF, B10F and hexadecimal), the most significant bit is
assigned even or odd parity. When even parity is used, for example, ASCII code "A" (41 hexadecimal)
is punched as is, whereas ""C" (43 hexadecimal) is converted to C3 in hexadecimal before being punched
by setting its MSB. The parity mode can be set using the P command with the desired switch assigned,
e.g. XPSPTP/PE /LF.

This PROM formatter assumes that the PTP/PTR interface is compatible with the RP-600 puncher/
reader from the Nada Electronics Laboratory. It can control RP-600 directly using the general-purpose I/O
card (MZ-80102). It can also control other models, such as the DPT26A paper tape punch from Anritsu,

if I/O conforming to the punch specifications can be implemented on the general-purpose I/O card.

PROM formatter All FDOS devices
< other than the
Absolute binary Formatter section $CMT and $SMEM

program unit >

Format control /‘\/

(Format conversion, o
output to punch,

input from reader) /—\/

Paper tape punch

Paper tape reader

Fig. 2-14 PROM formatter configuration

SYS-13

3. FDOS ORGANIZATION

Figure 3-1 shows the files which are run under control of the SHARP MZ-80 series FDOS. The FDOS
has the following features:
(1) Multistatement processing.
(2) Default argument processing.
(3) Allows wildcard characters in file references.

(4) File-oriented processing extended to I/O devices.

Boot/linker _] Reads and links system commands.

— I10CS | The standard devices include disks, tape unit, keyboard,
display unit, line printer, paper tape -punch and paper tape reader.
——|; Text editor]

— Z-80 assembler] ,

——[Linker I w
|
|

—1 Symbolic debugger

—] PROM formatter

— BASIC compiler |

—-L Built-in commands —l Include DIR, XFER, etc. (See Table 4-1)

— Other transient commands | Include LIBRARY, VERIFY, etc. (See Table 4-2)
——L User programs | Source files, relocatable files and object files created with this system

FDOS

Fig. 3-1 FDOS file organization

3 0000
Figure 3-2 shows the memory map for the above Moniti:
5 4 1000
system resources. FDOS is made up of a resident Monitor work area
. 3 ; s 1200 [T FDOS main section
section and an overlay section. Their resident sec- command interpreter
9 3 boot linker
tion includes: supervisor call procedure Reocdent o -
(1) A d & int ¢ il it ¢ work utilities
command line interpreter which interpretes o
and executes system commands. I0CS table
file management)
(2) A boot linker which reads and links command TPA
files from the FDOS diskette.
? ; Command unit
(3) A supervisor call procedure which manages
system resources, including files.
Tables Overlay area
(4) An I/O control system (I0CS) (allocation map, (transient
. device table) area)
(5) A file management program which manages the
: . § Work segments
diskette allocation map, file table and other (segment variables
: | ZWORK 0~19)
information. D000
Video RAM area
E000
Terminal control area
F000 —
IPL

Fig. 3-2 FDOS memory map
SYS-14

3.1 Boot Linker

The FDOS transient commands (whose file mode is .SYS) are not resident in memory, but are stored
in relocatable files on the system diskette. These programs exist not in absolute form but in relocatable
form. When they are invoked, boot linker relocates them and specifies their loading addresses (see Figure
3-3).

These relocatable system files differ from relocatable files generated by the assembler in the way in
which they are loaded into memory. The external symbol references of the system files have been re-
solved; these are just relocated by the boot linker. Accordingly, the control frame associated with each
statement of the system programs contains only a field identifying the statement as having a relative
address or absolute data and containing the byte count of the statement. When a relative address is indi-

cated in the control frame, the system adds loading bias to the relative address to form an absolute

address.
Monitor
FDOS
ll— ————— Boot linker
Relocate :
X > Absolute binary code
FDOS - Transient area
transient (FDOS commands
commands may be loaded in
arbitrary locations
Relocatable files ? within this area)
(identified by the .SYS file mode)
Fig. 3-3 Loading FDOS transient command with the F DOS boot linker
3.2 I0CS

IOCS in FDOS provides control over the display unit, cassette unit, floppy disk unit and printer. The
programmer can define other I/O devices using the ASSIGN command.

Control programs for such user I/O devices can be stored in external files and their names can be cata-
loged in the IOCS table. They are invoked and executed by IOCS as required.

The actual file management programs form a hierarchical structure as shown in Figure 3-4. In the MZ-
80 series system, routines from the macro command programs to the device control programs are
collectively called the input/output control system (IOCS). Being of modular construction, these programs
are as independent of each other as possible. By hiding controls unique to I/O devices, such as device
address management and buffering, IOCS permits the programmer to handle these programs as logical files
and to control the I/O devices as general files.

The alternate start/stop feature is enabled during IOCS operations. The system temporarily suspends
the read operation when an alternate stop is effected during a data read. At this point, the programmer
can switch to the FDOS command mode or continue the suspended IOCS operation by effecting an

alternate start.

SYS-15

))
j1un Aepdsip pIeoqAay J1un ade)
woisAg wasAg yound ade; 1adeg 1opear ade) 1adeg 1oyund aury 9]198SB0 WaSAS jiun ysip Addogy
ERICE B END] 0/ [elaS S921AR(]
® \ A
{
13[]013u0d I9[[0.3u0d I3[0 U0 I9[[onuod 19[j013u0d yound I3[[011U0D 13pEal I3[[01}U0D I9[[011U0D 13[[013U0D swiesoxd
9IAID Ias() O/I [eues jun Aepdsiq pie0qAay] ade) 1adeg ade) 1adeq Isqund aury adey ajesse) sip Addoyyg [o13uod
9210
A/
JuswadeurW weidoxd !

(uontuyep pue uoneId[e ssaIppe [eo130]/[eo1SAYJ)

[ouuERy)

[011U0D [oUUEBY)) S20I

—_————— HSOTD NHJO

L0d LED

HLIIM

swerdord
avay PUBLILIOD OIOB]

Furssaoordard o1 uonajep aig

sweioid

UOTIBID AL
B 1t juswafeurw o1,y

SPUBLLLIOD JUSISURI], Toqidwod HISV I9)1eUI0] WOYd Iaqury * | 1883nqap dfoquIAS

1031Pa 3X3],

weidord

I9[quIssse 08-7 uro)sAg

swesoid Jusurofeueu S[Iy Jo AINIONIS [BOIYOIEINNY $-¢ "SI

SYS-16

3.3 Dynamic Segmentation

Memory segmentation and relocation can be accomplished easily if a hardware relocation register is

used. However, no presently available 8-bit microprocessor has such a register. Consequently, methods of

simulating this function are commonly used. The boot linker previously mentioned can be thought of as a

variation of such simulations. Here, a method of memory segmentation and assignment which leaves the

memory image unchanged is described.

Two subroutines are used for memory segmentation as shown in Figure 3-5 and 3-6. These two subrou-

tines and segment variables are maintained in fixed locations in the FDOS main program area. They are

accessible to all programs. The 20 segment variables are initialized during preprocessing for each command

and assigned values so that no memory segment exists. They are redefined as required during processing

of each command, thus creating memory segments.

Fig. 3-5 Extending a specified segment

| e i et e St trr s S o e e R e s S R T 1
: A2 ; Segment No. (0-19) :
: BC <500 ; 500 bytes |
I CALL DOPEN ; DYNAMIC OPEN J
[Eetteer s e e e e e e e e e s
Segment No. Segment variables Results
0 ZWORK 0 : 5000 ZWORK 0: 5000
1 ZWORK 1 : 5500 ZWORK 1: 5500
2 ZWORK 2 : 6000+(500) ZWORK 2: 6500
3 ZWORK 3 : 6500+(500) ZWORK 3: 7000
4 ZWORK 4 : 7000+(500) ZWORK 4: 7500
5 ZWORK 5 : 7500+(500) ZWORK 5: 8000
6 ZWORK 6 : 8000+(500) ZWORK 6: 8500
7 ZWORK 7 : 8500+(500) ZWORK 7: 9000
18 ZWORK]18 :29000+(500) ZWORKILS : 29500
19 ZWORK19 :29500+(500) ZWORK19 : 30000
(ZWORK 0) (ZWORK 0)
(ZWORK 1) (ZWORK 1)
(ZWORK 2) -
g (ZWORK 2)
(ZWORK18) |-
| —
s T SR
(ZWORK19) |- (ZWORK18) |-
(ZWORK19) |-

SYS-17

Fig. 3-6 Deleting a specified segment

O R T i e T T o T T i e e, = j
l
P AeD ; Segment No. (0-19) %
: BC <500 ; 500 bytes |
II_ CALL DDELET ; DYNAMIC DELETE 1
Segment No. Segment variables Results
0 ZWORK 0 : 5000 ZWORK 0: 5000
1 ZWORK 1 : 5500 ZWORK 1 : 5500
2 ZWORK 2 : 6000—(500) ZWORK 2 : 5500
3 ZWORK 3: 6500—(500) ZWORK 3 : 6000
4 ZWORK 4 : 7000—(500) ZWORK 4 : 6500
5 ZWORK 5 : 7500—(500) ZWORK 5: 7000
6 ZWORK 6 : 8000—(500) ZWORK 6 : 7500
7 ZWORK 7 : 8500—(500) ZWORK 7 : 8000
18 ZWORK18 :29000—(500) ZWORK18 : 28500
19 ZWORK19 :29500—(500) ZWORKI19 : 29000
(ZWORK 0) (ZWORK 0)
(ZWORK 1) (ZWORK 1)
(ZWORK 2)
Ework AP WP pyorcn[]
1
(ZWORK18) r_/ (ZWORK19) [
(ZWORK19) |- -

LSAL NNY (xd

pasnup)

sjuawgos
oMy uado u

paxul pue
POJqUIdSSE Uaaq SeY
o1y juawgos 30alqQ

1 408 "LSIL MNIT (X

J[qe} [oquAS

eare Sunjury

(r40°1S4.1L)
uswWIas A1y fgO

(g9°14089)
paxul] aq 0} ¢ juduideg

[€:RNESCAN)
payul] aq 03 [judwFog

(xyury)
JuowFas purwWLIo)

T/1d1$ *9/L40$ “LSAL WSV (Xd

3[qe} joquIfg

(4¥°1S91)
juawsas o[y gy

(OSY"LSH.L)
JUAWFS 9]1j 32INOS

(191quiasse 087)
Juawgas puewuio))

| . (R (R A Rn [[

BAIE YOB)S — |

‘BoIB
POAIASAI SB I0JIPd
%23 dy} ul papnjouf

Liad (xg

PaAISRY

Tojynq 1pg

Juaurdes oIy ALIM

Jusws3as a[1j 9IN0S

(1031p2 1X91)
JUdWSas puewILIO)

S04

I0JTUO

A

S0a.d Sodad Funsi Alquassy S0dA
I0JTUON I0}IUOW I0}IUOI
uonnIaxyg Q Hmmm Iayurg D I9[qUIAsS Y D
o O o
uonnooxy U LSAL 19U QY LSAL / Tondwod DISVy JSV LSAL
J[qe) [oqUIAS
pasnun R o S

sjuawidas af1j uado u

juawdas uing

juowdas Aelry

(f40°LSHL)

pajuy pue

panidwod usaq sey
Yorym juawdas 193(q0

S0d.

I0jUO

ISAL NNY (x7

eale Junjury

(190°LS4L)
Juawas a1y [0

(17T°0T99)
payuI] 2q 0} 7 juswdos

(49°LSIL)
paxuI[9q 0} [juswidag

(royury)
JUaWFas puBLIUIO))

SOaA

I0)IUO

41T OTHY “LSAL MNIT (x4

pasnupn

(49°1S4L)
Juowi3as oty gy

OSV'LSdL,

Juaw3as (1} 92IN0g

1811 uonenduro)

(rodwod DISYg)
JudWw39s puBuILIO)

SO

IOJUO

LSAL D/0ISVe (x3

S0Q4 4q syuswBag jo uoneAndy L-¢ ‘8ig

1031pa 1X3],

=

SYS-18

4. FDOS COMMAND USAGE

4.1 Program Development Under FDOS

Source file Text editor

Source file

(LQ XFER O EDIT |Source creation
” (o) and editing
$ CMT i L
Source file L
e el ASM l BASIC
\/\ Assembler BASIC compiler
$PTR, $PTP, etc. Assembly Compilation
Assembly > listing Compilation listing
$CRT, SLPT, etc. $CRT, SLPT, etc.
Relocatable files Library file
LIBRARY
% i ?o
LINK DEBUG
System file Linker Symbolic debugger
Oo <t Linking \ Debugging
Execution information
Object file
Object file BNPF, HEXADECIMAL, BINARY formats
O D oo {1 ommbaer
- 00 < =
SEML RUN $PTR, $PTP, etc.

Y

(Execution)

Fig. 4-1

SYS-19

4.2 FDOS Command Coding Rules

This section describes the coding rules for FDOS commands.

4.2.1 Command line format
In the command mode, FDOS prompts for command entry with a number and the symbol ">". Enter

a command followed by arguments (described later), if necessary, press key and the FDOS will

execute the command.

Command
Prompt

Default drive number (described later)

Example 1: T >E,\'%I'——'AE,\§T: Atsiment L denotes a space.

The first number (1 ~ 4) indicates the default drive, namely, the currently logged-on disk drive.

Some commands may require two or more arguments.

Example 2: 2> XFER.__TEST, $ CMT
’V}’V\ MJKV___Argument 2
Argument 1
Command

The command and arguments must be separated by acomma and/or spaces.

(Legal) 2>, XFER_. TEST_,$ CMT

(Legal) 2> XFER , TEST, $ CMT

(Illegal) 2>XF ER TEST, ,$ CMT
.

Only one comma is allowed.
No space is allowed.

Two or more commands may be specified on one logical line by separating them with colons (" : ").

A line containing two or more commands is called a multistatement line. A logical line may contain any

number of commands but it must not exceed 79 characters in length.

Example 3: 2> DELETE TEST : RENAME AAA, TEST : ASM TEST

4.2.2 File name
All program and data files on a diskette are given file names. The programmer must specify a file name
when storing a program or data file on a diskette and when reading it. A file name must be from 1 to 16

alphanumeric characters (upper case letters only) and/or special characters !, #, D, &, s (R —, <,
=2 @; [N and .

No two files on a diskette can have the same file name and file mode (described later). Files with the
same file name may exist on a diskette if their file modes are different from one another.

(Files with the same file name and mode may exist on different diskettes).

SYS-20

4.2.3 File modes
The file mode identifies the kind of the file. It is usually used with a file name. The MZ-80 series file

modes are listed below.

File mode

File mode Meaning

.OBJ Identifies an object file which contains Z80 machine code.

Identifies a source file, such as one created by the text editor, which contains a stream of

- a5C ASCII characters.
RB Identifies a relocatable file which contains'pseudo-machine language code (relocatable binary
; code) generated by the assembler or compiler.
.LIB Identifies a library file consisting of two or more relocatable files.
SYS Identifies a file containing a system program which runs under FDOS, such as the text editor

and assembler.

4.2.4 File attributes
File attributes are information pertaining to file protection. There are four file attributes: 0, R, W and
P. File attribute O indicates that a file is not protected. The other file attributes inhibit the use of specific

commands as listed below.

File attribute R W P
TYPE TYPE
XFER XFER
EDIT EDIT
ASM ASM
Inhibited FDOS LINK LINK
Commands DEBUG DEBUG
PROM PROM
BASIC BASIC
DELETE DELETE
RENAME RENAME
- ROPEN # ROPEN #
IC“;IHIEI‘:: deSIC INPUT #() INPUT #()
PRINT #() PRINT #()

4.2.5 File types

A file type indicates the file access method. There are two file types: sequential (S) and random (X).
FDOS normally handles only sequential files. Random files can be accessed only by the DELETE,
RENAME and CHATR commands. BASIC compiler is required to create, write to and read from random

files.

SYS-21

4.2.6 Wildcard characters
The programmer can specify two or more files at a time by specifying wildcard characters in the file -
name and file mode. The wildcard characters " ? " and ' > " are used for file names and " .*<" is used for
file modes.
[Wildcard character " ? " |
" 7" represents any one character. For example, assume that files ABC.ASC, ABC3.ASC, ABCD.RB,
XYZ.ASC and ADCN.ASC exist on the currently logged-on disk. When the command.
TYPE A?7C?.ASC
is entered, the contents of the files ABC3 . ASC and ADCN . ASC will be displayed.
| Wildcard character " " I
"k " Represents O or more characters.
A: Represents file names beginning with "A'" e.g., A, A2, ABC
%2 : Represents file names ending with 2" e.g., TEST2, SAMPLE?2
P>x5: Represents file names beginning with "P" and ending with "5" e.g., PROGRAMS, PM5
| Wildcard characters " X" | i)

" >x" represents all file modes.

DELETE PROG 1. Deletes all files whose file name is PROG1
XFER >k .ASC, § PTP Punches all files whose file mode is .ASC.
DIR A B> ?3 .RB

DELETE > . Deletes all files on the diskette.

4.2.7 Drive number and volume number
A drive number refers to the drive number of a floppy disk drive (MZ-80FB or MZ-80FBK). Drive
numbers 1 through 4 are assigned device names $FD1 through $FD4 respectively.

A volume number (1-127) is a number identifying a diskette. FDOS checks this number for validity

each time it accesses a file. ot

4.2.8 Basic device name
FDOS can handle the following I/O devices:

$KB : MZ-80A system keyboard
$CRT : MZ-80A system display unit
$FDI1 :
$FD2 : ' g
Floppy disk drives (MZ-80FB or MZ-80FBK)
$FD3 :
$FD4 :

$CMT : System cassette unit
$LPT ; Optional printer
$MEM : A part of main memory regarded as an I/O resource.
The system automatically reserves an unused area as MEM. This area is released by the

DELETE $MEM command or when an error occurs.

SYS-22

4.2.9 Auxiliary device name

Auxiliary devices are devices whose control programs are not resident in the FDOS area in memory.

Their control programs are stored in external files. An auxiliary device name is assigned to an auxiliary

device control program using the ASSIGN command to allow IOCS to manage the control program.

$PTR :
$PTP :

$SIA :
$SIB :
$SOA :
$SOB :

$USR1 :
$USR2 :
$USR3 :
$USR4 :

Paper tape reader and punch. The user must prepare an interface circuit for these using a
universal interface card. The system contains their control programs, however. For details,
refer to "PAPER TAPE PUNCH AND READER INTERFACE" in the Appendix.
Serial input port A
Serial input port B : :

The interface card for these I/O ports is optional.
Serial output port A

Serial output port B)

These device names are provided for user-supplied I/O de\}ices. The control program

must be supplied by the user.

To use these device names, prepare a machine language area using the LIMIT command, load the

corresponding auxiliary device control program into the area using a LOAD command and link the

program with the I/O controller of FDOS using an ASSIGN command. The auxiliary device control

programs are supplied in the form of object files and ASCII files. In general, use the object files. If you
want to change the loading address, assemble and link the ASCII files with FDOSEQU.LIB from the

master diskette.

The loading address of each auxiliary device control program is shown below.

C900 $SIA
C9DA $SIB e
CAB4 $SOA T SIO.ASC, SIO.OBJ
CBS8E $SOB
CE00 $PTR }
CE39 SPTP = =—— | PIRP.ASC,PTRP.OBJ
D000 VRAM, etc.
1. Memory map 2. Control programs
Example 5: 1> LIMIT $C900

Example 6:

Notes:

1 > LOAD SIO PTRP
1> ASSIGN $SIA $C900 $SIB $CO9DA $SOA $CAB4 $SOB $CBSE
$PTR $CEOO0 $PTP $CE39
EXEC $FDI ; LOADAUX
All the auxiliary device control programs are loaded since file LOADAUX.ASC contains

the above commands.

1. Any file input from the keyboard ($KB) is terminated by pressing the key. For example, exe-
cution of the command
1> XFER $KB, XYZ
is terminated when the programmer presses the [BREAK]| key.

SYS-23

2. The end of files from $PTR is identified by the null code (00H) following the data area (null codes in
the feed area are ignored).

3. $CMT and $MEM can be accessed only by the built-in commands and programs compiled by the BASIC
compiler. When they are used by other programs, the error message

no usable device
is issued.

4. $CMT can handle only .ASC and .OBJ mode files. $KB, $CRT, $LPT, SPTR, $PTP and $MEM can
handle only .ASC mode files (error message il file mode" is issued if an illegal file mode file is used
with one of these devices).

5. $PTP and $PTR automatically skip the tape feed portions.

4.2.10 Switches

Switches follow command names or arguments and specify optional command functions. There are
three types of switches.
| Global switches |

Global switches are appended to command names and specify the mode in which the command is to be

executed. Two or more switches may be specified for a command as shown in Example 8. In such cases

they may be placed in any order.

Example e 1> DATE/P /P denotes LPT.
f LGlobal switch
Command
Example 8: 1>LINK/P/T TEST /P denotes LPT.
LGIObal switch /T denotes the symbol table.
Invalid: 1>LINK. /P ./ T TEST
\t k No space may appear in these positions.

| Local switches |

Local switches are appended to arguments and specify the use of the arguments.

Example 9: 1> ASM TEST, $ LPT/L,XYZ/0 /L specifies the device on which the assembly listing is
to be output.
/0 specifies the relocatable output file.

| Device switches |

Device switches are appended to device names. Their format is identical to that of local switches. The
legal device switches are /' PE, /PO, /PN and /LF. These switches can be appended only to devices
$PTR, $PTP, SUSR1 ~ 4.

The meanings of the device switches are listed below.

Switch Input Output
/PE Specifies that data is to be checked for even parity. Specifies that even partiy is to be used. (Note)
/PO Specifies that data is to be checked for odd parity. Specifies that odd parity is to be used. (Note)
/PN | Specifies that bit 7 (MSB) of input data is to be set to 0. | (Note)
/LF Invalid Specifies that is to be followed by :

Note: An error is generated (il data) if the MSB of the data is set to 1 from the beginning (e.g., graphic characters).

SYS-24

Note:
Any switch following the first argument of the RUN command is treated as a global switch.
Example 10: 1 > RUN_.ASM48/P_TEST, XYZ/O

Local switch
Global switch

The meanings of the individual global switches are described in the related command descriptions.

4.2.11 Default assumptions
The general format of a file specification (valid for $FD1—-$FD4 and $CMT) is given below.

Example 11: FD2 ;PROG?2 . ASC $ CMT ; TEST2 . OBJ
File mode File mode
File name File name
Device name Device name

The programmer can omit portions of the complete file specification as explained below.
Default drive
The device name may be omitted as exemplified below.

Example 12: 2> LINK TEST1, $FD3 ; TEST2, TEST3

In the above example, the system assumes the name of the currently logged-on disk drive (identified by

"2>") before TEST1 and TEST3. Consequently, the above command line is equivalent to the following:
2> LINK $FD2 ; TEST1, $FD3; TEST2, $FD2; TEST3
The default drive can be changed by:
1. Executing the DIR command or

2. Moving the cursor to the left of the prompt "'>" and changing the drive number (e.g., changing
|'2>l| to ||1>Il).

| Default file name |

The file name may be omitted when reading files from the cassette tape unit (§CMT). When a file name
is omitted in the XFER command or other similar command (See example 13), the system assumes an
appropriate file name.

Example 13 : XFER §$ FD1 ; ABC . ASC, §$ FD2

The system assumes $FD2; ABC. ASC.

[Default file mode |

When the file mode is omitted, the system makes an appropriate default assumption according to the

command. See the individual command descriptions.

Notes:
1. Both device name and file name cannot be omitted simultaneously.
2. No file name can be assigned to devices other than $FD1 through $FD4 and $CMT.

SYS-25

4.2.12 Arguments

There are several argument formats.

1. Device name + File name + File mode

Examples : $ FDI1 ; ABC . ASC $.CMIS; XVZ OBT Hin S ED 2k iek

2. Device name + File name. The file mode is omitted.

Examples : $FD1;ABC $FD2;A>k $CMT;TEST

3. File name + File mode. The device name is omitted (default drive).

Examples : TEST3 aRB: ki ASC PROG? .RB

4, Device name
a. When the file name and mode are omitted or when the device name proper is to be specified.
Examples: $FD1 $CMT
b. When neither file name nor mode can be specified.
Examples;: @ $iPTR i $.CRT . ;$ LPT

5. Hexadecimal constant
Examples : $1200 $ CO000

6. Special arguments
Examples : TIME 9 :30: 00

Argument
Command

LIMIT MAX

Argument
Command

SYS-26

4.3 Using FDOS Commands
4.3.1 ASM Transient

ASM filename

Function

The ASM command assembles the source program in the source file specified by the argument, out-

puts the result to a relocatable file and outputs an assembly listing to the specified file or device.

| Default file mode |
.RB when local switch /O is specified; otherwise, .ASC.

Global switches:

None: A relocatable file is generated.

/N: No relocatable file is generated.
Local switches:

None: Specifies that the specified source file is to be assembled.

/0O: Specifies that the relocatable code is to be output to a file under the selected name.
/B Specifies that only error statements are to be output to the selected file or device.
/L Specifies that the assembly listing is to be output to the selected file or device.

| Wildcard characters|
Not allowed

(1) ASM TEST
Assembles source file TEST.ASC and generates relocatable file TEST.RB.

(2) ASM TEST, $ LPT/L,XYZ/O ;
Assembles source file TEST.ASC, generates relocatable file XYZ.RB and outputs the assembly
listing to LPT.

(3) ASM/N TEST, SCRT/E, $ SOA/L
Assembles source file TEST.ASC while displaying error statements (including external symbol
references) and outputting the assembly listing to SOA. No relocatable file is generated.

(4) ASM TEST, $ FD2 ; TEST1 /L, $FD2 ; TEST1 .RB/O
Assembles source file TEST.ASC and saves relocatable file TEST1.RB and assembly listing TEST1.
ASC on FD2.

(5) ASM TEST, $ LPT/L, $ 2000
Assembles source file TEST.ASC, generates relocatable file TEST.RB and outputs the assembly
listing to LPT with a bias of 2000H added.

SYS-27

4.3.2 ASSIGN Transient

Format

ASSIGN devicenamel, $nnnn, , devicenameN, $nnnn

The ASSIGN command assigns logical device names to user-supplied I/O control routines.

None.

| Wildcard characters |
Not allowed.

Examples

(1) LIMIT $C000
ASSIGN $USRI1, $C000
Assigns device name $USRI1 to the user I/O control routine at address $C000.

(2) ASSIGN $USR2, $C200, SUSR3, $C400
Assigns $USR2 to the routine at address $C200 and $USR3 to the routine at address $C400.

(3) ASSIGN S$PTP, $C600
Assigns $PTP to the new PTP routine at address $C600 in place of the PTP control routine in
FDOS.

| Programming notes |

(1) When a device name is assigned more than once, the last assignment is taken.
(2) To cancel an assignment, set the address operand to SFFFF.
Example : ASSIGN §$USRI1, SFFFF This command cancels $USR1.
(3) When an I/O control routine is destroyed by execution of a new LIMIT or LOAD command it is

necessary to cancel the device assignment for that routine using the above procedure.

4.3.3 BASIC Transient

BASIC filename

Function

The BASIC command compiles the source program written in BASIC language identified by the argu-
ment and outputs the BASIC listing.

| Default file mode |
.RB when local switch /O is specified; .ABC otherwise.

SYS-28

Global switches
/N: Specifies that no relocatable file is to be generated.
£€: Specifies that the BASIC listing is to be displayed on CRT.
/P Specifies that the BASIC listing is to be printed on LPT.

(Note that switches /C and /P cannot be specified simultaneously.
Local switches

None: Specifies that the specified source file is to be compiled.

/0: Specifies that the relocatable file is to be output to the selected file.

| Wildcard characters |
Not allowed.

(1) BASIC TEST
Compiles source file TEST.ASC and generates relocatable file TEST.RB.

(2) BASIC/C TEST, XYZ/0O
Compiles source file TEST.ASC, generates relocatable file XYZ.RB and displays the BASIC listing
on CRT.

(3) BASIC/N/P TEST
Compiles source file TEST.ASC and prints the BASIC listing on LPT. No relocatable file is gene-
rated.

l Programming noteil

The compiler terminates generation of the relocatable file when it detects an error during compilation.

4.3.4 BOOT Built-in

BOOT

Function

Terminates execution of FDOS and activates the MZ-80A system IPL (Initial Program Loader).
(same as monitor F command)

| Programming notes |

The system program is loaded into memory when IPL is activated. Therefore, former memory con-

tents are cleared.

4.3.5 CHATR Built-in

CHATR sign, filenamel, attributel, , filenameN, attributeN

Function

The CHATR command changes the attributes of a specified file.

SYS-29

’ Default file mode |
.ASC ~—
None.
| Wildcard characters |
Not allowed.
| File attributes |
0: None.

R : Read-protected file
W : Write-protected file
P :

Permanent file

(1) CHATR KEY, TEST, R
Assigns the password "KEY" to file TEST.ASC and declares the file as a read-protected file.
(2) CHATR SECRET, TEST.OBJ, 0
Deletes the file attributes of file TEST.OBJ. The specified password, "SECRET", is matches with
the password specified for the file before the command is actually executed.
(3) CHATR
Allows the programmer to interactively specify the sign, file name and attribute in that order.
(4) CHATR sign

Allows the programmer to interactively specify the file name and attribute in that order.

| Programming note]

The interrelationship of the file attributes is shown below.

Qr A T

=) Set sign.
—_— Check sign.

..... N Does not check sign.

4.3.6 CONVERT Transient

Format
CONVERT

Function

Converts a file generated with the SA-5000 series BASIC interpreter or the D-BASIC SA-6000 series e

into a file usable under FDOS, or converts a file generated with FDOS into a file usable under the

SYS-30

—\

SA-5000 series or SA-6000 series. The relationship between file modes handled by this command is

as follows.

BASIC FDOS
BTX T ASC
BSD T ASC

OBJ SR OBJ

| Default file mode |

None.

None.
| Wildcard characters |
Not allowed.

2 > CONVERT

Choose one from:
1: BTX — ASC

2 “ASE = BEFX
3:BSD > ASC
4:ASC - BSD
5 :0BJ = OBJ
(5= 592
Source drive No. (1 ~4,CMT =0) ?2 Enter 1 ~ 4 for the $FD and O for the SCMT.

Source file name ? SAMPLE
Destination drive No. (1 ~ 4, CMT = 0) ?3

Destination file name ? SAMPLE

End of convert

| Programming notes I
(1) Never intermix D-BASIC format diskettes and FDOS format diskettes. Otherwise, disk contents

may be destroyed.

(2) Since the syntax of D-BASIC and that of the BASIC compiler differ slightly, there are some
cases in which programs converted with the CONVERT command cannot be compiled by the
BASIC compiler without some modification. Use the text editor to modify such programs before
compiling them with the BASIC compiler.

(3) A BRD file cannot be converted. First convert it into a BSD file, then execute the CONVERT

command.

Refer page 60 for further information.

SYS-31

4.3.7 COPY Transient

¥

COPY
The COPY command copies the contents of the source diskette to the destination diskette. The
programmer can specify only predetermined types of diskettes as the destination and source diskettes

as summarized in the table below.

Source Destination | Allowed/disallowed Remarks
(Any diskette) | Master Disallowed
Master Submaster Allowed
Master Slave Allowed The destination diskette becomes a submaster diskette.
Submaster Submaster Disallowed
Submaster Slave Disallowed
Slave Submaster Allowed The destination diskette becomes a slave diskette.
Slave Slave Allowed

It is desirable to create a submaster diskette from the master diskette using the COPY command and
to use this submaster diskette during normal operation. It is also desirable to make copies at appro-
priate times when the original diskette is updated to prevent errors due to physical defects in the disk A

or software errors or inadvertent use of the DELETE command.

| Default file mode |

None.

None.
uVildcard characters]

None.

(1) FDOS always copies from $FD1 to $FD2 when the system has two or more floppy disk units.

2> COPY s
Destination diskette’s sign ZBACKUP < Proceeds to the next step if the passwords match.
Insert source into $FD1 < Insert the source diskette in drive FD1.
Destination into $FD2, {} Space key < Insert the destination diskette in drive FD2, then press the key.
2= Copying is completed.
4.3.8 DATE Built-in
Format

DATE mm .dd.yy

Function

The DATE command sets or displays the system calender date in the month.date.year format.
This information is assigned to each file when it is saved on a diskette. The date is not automatically

updated, however.

Default file mode

None.

SYS-32

Global switch /P: Specifies that the date is to be printed on LPT.

(Wildcard characters]
Not allowed.

Examples

(1) DATE 1.1.82

Sets the system calender date to Janualy 1st, 1982
(2) DATE

Displays the current date on CRT.
(3) DATE/P

Prints the current date on LPT.

4.3.9 DEBUG Transient

DEBUG filenamel, , filenameN
The DEBUG command links and loads relocatable files specified by the arguments to form an object
program in memory for debugging.
| Default file mode|
.OBJ when local switch /O is specified; .RB otherwise.
Global switches
None: Specifies that only the link information is to be displayed on CRT.

il Specifies that the symbol table information is to be output (on CRT unless global switch
/P is specified).
~1P: Specifies that the link and symbol table information is to be printed on LPT when global
switch / T is specified.
Local switch :
/0:; Specifies that the object file is to be created under the selected file name.
| Wildcard characters |

Not allowed.

(1) DEBUG TEST1, TEST2
Links and loads relocatable files TEST1.RB and TEST2.RB and waits for a debugger command.
The link information is displayed on CRT.

(2) DEBUG/T/P TEST, TEST /0O
Loads relocatable file TEST.RB, prints the link and symbol table information on LPT and gene-
rates object file TEST.OBJ.

SYS-33

(3) DEBUG TEST1, $1000, TEST2, TBL $20
Links and loads relocatable files TEST1.RB and TEST2.RB and reserves $1000 bytes of free area
in memory between them. The symbol table size is set to $2000 (approximately 8K bytes).
When the table size is not specified, the debugger automatically allocates 6K bytes for it.

(4) DEBUG

Invokes the symbolic debugger and enters the command mode.

4.3.10 DELETE Built-in

DELETE filenamel, , filenameN

Function

The DELETE command deletes the files specified by the arguments except those with the W or P file
attribute.

| Default file mode |
.ASC

Global switches /C: When this switch is specified, the system displays each file on CRT for confir-

mation. The file is deleted when the programmer presses thekey and
skipped when he presses the [N] key.

/N : Specifies that no deleted file is to be displayed. (The programmer must not
specify /N and / C simultaneously.)

| Wildcard characters|
Allowed.

(1) DELETE TEST. %
Deletes all files whose file name is TEST.
(2) DELETE /C * .OBJ
Displays all files with a file mode of .OBJ on CRT for confirmation before deleting them.

(3) DELETE S$FD2 ; k. x
Deletes all files on FD2 except those with the file attribute P or W. To delete file-protected file,

it is necessary to cancel the file protect attributes with the CHATR command.
(4) DELETE $ MEM
Deletes file $ MEM.

SYS-34

4.3.11 DIR Built-in

DIR devicename (filename)

Function

Displays the contents of the directory specified by devicename of filename. "devicename" must refer
to a floppy disk unit.

‘ Default file mode |
. X

Global switch /P : Specifies that the directory is to be printed on LPT.

] Wildcard characteﬂ
Allowed.
(1) DIR $FD2
Displays the file information of all files on the diskette in FD2 on CRT. FD2 is designated as the

default drive.

(2) DIR/P
Prints the file information of all files on the diskette in the current default drive on LPT. The
directory device remains unchanged.

(3) DIR TEST
Displays on CRT the file information of all files on the diskette in the current default drive whose

file name is TEST.

(4) DIR $FD2 ;> . ASC
Displays the file information of all source files on the diskette in FD2 on CRT. FD2 is designated

as the default drive.

1 Programming noteﬂ
sect AT filename mm.dd.yy
2>10 RS TESE . ASC /10.25.80
o g S File mode
/VT ﬂ——— File name m creation (October 25th, 1980)
File type (sequential file) (/72.22.77 appears if unknown)

File attribute (read protected)

Number of sectors used
Drive number

SYS-35

4.3.12 EDIT Transient

Format
EDIT filename

Function

The EDIT command invokes the text editor to create a new source file or edit an existing source file.
LDefault file mode]
ASC

Switches

None.
LWildcard characte§|
Not allowed.

Examples
(1) EDIT
Invokes the text editor and enters the command mode.
(2) EDIT TEST
Invokes the text editor, reads source file TEST. ASC and enters the command mode.
(3) EDIT $FD2 ; TEST
Invokes the text editor, reads source file TEST. ASC from the $FD2 and enters the command

mode.

4.3.13 EXEC Built-in

Format
EXEC filename

Function

The EXEC command executes the contents of the file specified by the argument as FDOS commands.
A device name may be specified in place of filename. Files containing FDOS command are called
EXEC files.
| Default file mode |
.ASC
None.
| Wildcard characters |
Not allowed.
(1) EXEC MACRO
Executes the contents of source file MACRO.ASC assuming that the file consists of FDOS com-

mands. When the file MACRO.ASC contains the command lines shown below, the system executes
the commands in sequence from the top to the bottom.

ASM $FD2 ; TEST

LINK /T/P $FD2 ; TEST

CHATR KEY, $FD2 ; TEST.OBJ, W
RUN $FD2 ; TEST

SYS-36

3>FREE
DIR /7P $FD2

(2) EXEC MYDEVICE

Sequentially executes the command lines contained in source file MYDEVICE.

LIMIT $C000 < Limit the FDOS area to $C000.
LOAD MYPRINTER < Set the loading and execution addresses to $C000.
LOAD MYLIGHTPEN < Set the loading and execution addresses to $C800.

ASSIGN $USRI1, $C000, $USR2, $C800 < Assign user I/O names to user programs.

(3) EXEC ABC
Executes the routine in file DEF repeatedly if file ABC.ASC contains the following routine.

RUN DEF
EXEC ABC

Brogramming notes

(1) Since the EXEC command executes the commands specified in a file as macro commands, it

cannot be specified on a multistatement line as shown below.
EXEC MACRO : TYPE MACRO

(2) The specified file may have the file attribute R, W or P. However, execution of files with the
attribute R or P is not displayed.

(3) When an error occurs during execution of an EXEC file, the system immediately terminates pro-
cessing and waits for entry of a new FDOS command from the keyboard.

(4) When the file name START-UP is assigned to an EXEC file, that file will be automatically exe-
cuted when FDOS is activated.

4.3.14 FORMAT Transient

Format
FORMAT $FDn
The FORMAT command formats (initializes) a new diskette.
The user must always format new diskettes before using them.
| Default file mode |

None.
None.

| Wildcard characters |
Not allowed.

SYS-37

(1) FORMAT S$SFD2

FDOS diskette formatting

Insert diskette into $FD2, I} space key

New sign ? SHARP

Volume No. ? 50

END

Insert diskette into $FD2, <& space key

Break «<—Press the[BREAK]Key to return to FDOS.

The above interaction shows an example of formatting a completely new diskette.

"sign" prompts for a password to be given at the diskette. When this diskette is resubmitted for
formatting, the system checks for a password match before actually reformatting the diskette.
"Volume No." prompts for a volume number to be assigned to the diskette. The programmer can

specify any number from 1 to 127. The volume number should be unique.

(2) FORMAT

FDOS diskette formatting

Insert diskette into $FDI,) space key

Old sign ? SHARP <— The system matches the password entered with that stored on the diskette and proceeds to
the next step if they match.

New sign ? MZ-80 <— Set a new password.

Volume No.? 100

END

Insert diskette into $FDI, L space key

Break <— Press the[BREAK |key to return to FDOS.

The above interaction shows an example of reformatting a previously formatted diskette. The

meanings of "sign" and ""Volume No." are identical to those in example (1).

[Programming notes |

The following message will be displayed if a diskette cannot be initialized because of defects, etc.

(1) bad track #nn
When this message is displayed, the XFER command can be executed for the diskette but the

COPY command cannot.
(2) no usable diskette

When this message is displayed, this diskette is not usable.

SYS-38

P &

4.3.15 FREE Built-in

FREE $FDn

The FREE command displays the number of used sectors, the number of unused sectors, and/or the

volume number of the diskette in the specified floppy disk unit.
| Default file mode |

None.

Global/P : Specifies that the disk usage information is to be printed on LPT.
LWildcard characters

Not allowed.

(1) FREE $FD2

$ FD2 vol: 100 left: 1072 wused: 48
(2) FREE/P

Prints the same information as given in example (1) on LPT, except that the information pertains

to the diskette in the default drive.

[Programming note |

A diskette is comprised of 1120 sectors (each consisting of 256 bytes). Of these 1120 sectors,
however, 48 sectors are reserved by the system as FDOS areas. Consequently, used:48 is indicated

for new diskettes.

4.3.16 HCOPY Built-in
Format
HCOPY message

Function

HCOPY prints the contents of the CRT screen from the upper left position to the current cursor

position on LPT as is with a message.
’ Default file mode |
None.

None.

l Wildcard characters
Not allowed.
(1) HCOPY
Prints a copy of the CRT screen on LPT.
(2) HCOPY SHARP-FDOS

Prints a copy of the CRT screen on LPT after outputting a form feed and the specified message.

SYS-39

[Programming note J

(1) Characters which can be used for messages are ASCII codes 00H-7FH, except for "'/"and ":".
(2) The following are LPT mode control codes.

Paging: Feeds the paper to the position where power has been turned on.

Suppressed spacing: Used for graphic display, etc.

Double size characters: Used for titles, etc.

[@ Clear: Clears the and functions.

4.3.17 LIBRARY Transient

LIBRARY filenamel, , filenameN

The LIBRARY command reads the relocatable files specified by the arguments to form a library file.
| Default file mode]

.LIB when local switch /O is specified; .RB otherwise.

Global switches

None: Link information pertaining to the relocatable files is displayed on CRT.
L P Specifies that the link information is to be printed on LPT.
Local switches
None: The first filename specified is used as the name of the library file.
70 Specifies that the library file is to be created with the selected file name.

| Wildcard characters |
Not allowed.
Examples

(1) LIBRARY TEST1, TEST2 ;
Reads relocatable files TEST1.RB and TEST2.RB to generate library file TEST1. LIB. The link
information is displayed on CRT.

(2) LIBRARY /P TESTI1.LIB, TEST2, XYZ /O
Reads relocatable files TEST1.LIB and TEST2.RB and generates a library file named XYZ.LIB.

The link information is printed on LPT.

4.3.18 LIMIT Transient

Format
LIMIT $nnnn
Function
The LIMIT command sets the FDOS area boundary at address $nnnn.
| Default file mode |
None.

None.

SYS-40

| Wildcard characters |

None.

(1) LIMIT $C000
Limits the FDOS area to $C000 and frees the higher area.
(2) LIMIT MAX

Sets the FDOS area to the maximum available address.

LProgramming note—l

The LIMIT command cannot be specified in a multistatement as shown below.
Illegal: LIMIT $B00O : DIR SFD2

4.3.19 LINK Transient

LINK filenamel, , filenameN
The LINK command links the relocatable files specified by the arguments to generate an object or
system file.
L Default file mode \
.OBJ when local switch /O is specified; .RB otherwise.

Global switches

None: Only the link information is displayed on CRT.

2] b Specifies that the symbol table is to be output (on CRT unless global switch /P is
specified). |

AR Specifies that the link and symbol table information is to be output to LPT (when global
switch /T is specified).

/5 Specifies that a system file is to be generated.

Local switches
None: The first filename specified is used as the name of the object file.
£40O: Specifies that the object file is to be created under the specified file name. If global

switch /S is specified, specifies that the system file is to be created under the specified
file name.
[Wildcard characters |
Not allowed.
(1) LINK TESTI1, TEST2
Links relocatable files TEST1.RB and TEST2.RB and generates an object file named TEST]1.

OBJ. The loading and execution addresses of the object file are automatically set to the beginning
address managed by FDOS. The link information is displayed on CRT.

(2) LINK/T/P TEST1, TEST2, XYZ /O
Links relocatable files TEST1.RB and TEST2.RB and generates object file XYZ.OBJ. The loading

SYS-41

and execution addresses of the object file are set to the beginning address managed by FDOS.

The link and symbol table information is output to LPT.

(3) LINK $C000, TEST, FDOSEQU.LIB, EXEC$C100
Links TEST.RB and FDOSEQU.LIB and generates object file TEST.OBIJ, specifying $C000 as the
loading address. The execution address of the object file is $C100.

(4) LINK TEST1, $1000, TEST2, TBL $20
Links file TEST1.RB (specifying the beginning of the FDOS area as the loading address), then
links and loads file TEST2.RB, reserving $1000 bytes of free area between the two files. The
symbol table size is set to 8K ($2000) bytes.

4.3.20 LOAD Transient

LOAD filenamel, , filenameN
The LOAD command loads the object files specified by the arguments in areas outside the area
managed by FDOS.
[Default file mode—]
.OBJ
None.
| Wildcard characters |
None.
(1) LOAD TEST1, TEST2
Loads object files TEST1.0BJ and TEST2.0BJ into memory areas outside the area managed by

FDOS. The programmer must create object files so that they are to be loaded in appropriate

addresses.

4.3.21 MLINK Transient

MLINK filenamel, , filenameN
The MLINK command links the relocatable files specified by the arguments to generate an object file.
| Default file mode |
.OBJ when local switch /O is specified; .RB otherwise.
Global switches
None: Only the link information is displayed on the CRT.

/T: Specifies that the symbol table is to be output (on the CRT unless global switch /P is
specified).
LB Specifies that the link and symbol table information is to be output to the LPT (when

global switch /T is specified).

SYS-42

Local switches
None: The first file name specified is used as the name of the object file.

70 Specifies that the object file is to be created under the selected file name.

| Wildcard characteﬂ
Not allowed.

Examples

2 > MLINK STARTREK

| Programming notes \

(1) The MLINK command can be used in the same manner as the LINK command except that it

cannot specify the table size (TBL$hh).

(2) The LINK command can generate an object file of up to approx. 36K bytes. The MLINK com-

mand is used when the file exceeds this size to generate object files of up to approx. 46K bytes.

However, the MLINK command takes twice as long as the LINK command to generate an object

file because the MLINK command links relocatable programs using a 2-pass system. The following

diagrams show memory maps applicable to execution of the LINK and MLINK commands.

Monitor Monitor
1200H FDOS 1200H FDOS
LINKER MLINKER
Link area } The object pro- Symbol table
gram is gene-
Symbol table rated in this area, Unused
then saved on
Stack area the diskette. Stack area
RanoH VRAM, etc. L VRAM, etc.
LINK command MLINK command

4.3.22 MON

Format
MON

Function

The MON command returns control to the monitor.

[Programming notes |

Control is transferred to FDOS from the monitor with the following monitor command.

* J 1200

SYS43

The object -
program is
generated
on the
diskette.

Built-in

4.3.23 PAGE Transient

Format
PAGE output-device or PAGE n

Function

The PAGE command carries out a paging operation on the output device specified by output-device,
or sets the number of lines per page on LPT.
LDefault file mode |
None.
None.
| Wildcard characters
None.
(1) PAGE or PAGE $ LPT
Carries out a form feed on LPT.
(2) PAGE $ PTP
Produces a feeder tape on PTP.

(3) PAGE 22
Sets the number of lines per page on the LPT to 22. The print form is fed to the top of the next

page when a page feed code is issued or the TOP OF FORM button is pressed.

4.3.24 POKE Built-in

POKE S$nnnn, datal, , $uuuu, dataN

Stores datal consisting of an even number of digits in and from address $nnnn (4-digit hexadecimal
number) on, and stores dataN consisting of an even number of digits in and from address $uuuu
on. Any address is accessible. The maximum length from POKE to data N is 160 characters including

ODH, space, etc.
| Default file mode |

None.
None.

| Wildcard characters
None.

POKE $CFOD, 2010, $CFOF, 40

Stores 20 in address $CFOD, 10 in $CFOE and 40 in $CFOF.
POKE $CFOD, 1235678, 12, $CFOQF, 40

Not allowed

SYS-44

Transient

F oY
L2 @
AEIR
SEl 3
g =]

0

=

Function
The PROM command converts the format of the object file to an appropriate PROM writer format.
| Default file mode|

None.

Switches

None.
| Wildcard characters

None.

i

Exampie
(1) PROM
Invokes the PROM formatter program and enters the command mode. Refer to the "PROM For-

matter' manual for further information.

4.3.26 RENAME Built-in

Format

RENAME oldnamel, newnamel, , oldnameN, newnameN

Function
The RENAME command renames specified files.
| Default file mode]
ASC

Switches

None.
| Wildcard characters |
An asterisk may be used to specify the file mode (. >).

Examples
(1) RENAME TEST1, TEST2
renames TEST1.ASC to TEST2.ASC.
(2) RENAME $FD2 ; TEST1 . OBJ, TEST2, TEST3 . RB, TEST4
Renames TEST1.0BJ on the diskette in FD2 to TEST2.0BJ and TEST3.RB on the diskette in
the default drive to TEST4.RB.

| Programming notes
(1) Files with the file attribute W or P cannot be renamed.
(2) The command RENAME $FD2;TEST1, $SFD2;TEST2 cannot be executed since $FDn specified
for the old name applies to the new name, which is illegal.
(3) The command RENAME TESTI1.LIB, TEST2.RB cannot be executed since the file modes of the
old and new names disagree.
(4) The command RENAME TEST.LIB, TEST2 can be executed normally. The new name is assigned

the file mode of the old name.

SYS-45

4.3.27 RUN Built-in

Format v
RUN filename or file name
Function
The RUN command executes the program in the object file specified by the argument.
| Default file mode |
.OBJ, .SYS

Switches

None.
] Wildcard characters

None.

Example

(1) RUN TEST
Executes the program TEST.OBJ. When its loading address is such that it overwrites the FDOS

area, the system issues the message
destroy FDOS ?

on the CRT. When the programmer press the key, the system loads the program, overwriting

the FDOS area and executing it. When the programmer presses thekey, the system issues the

error message "'memory protection" and waits for a new FDOS command.
(2) 1 > TEST

Accesses the drive 1 to seek .SYS mode file and executes it if found. If not found, error occurs.
(3) 2] TEST

Accesses drive 2 to seek program TEST.SYS and executes it if found. If not found, it seeks TEST

.OBJ and executes it if found. If not found, error occurs.

l Programming notes |

The meanings of the prompt symbols (> and]) are shown below.

SYS-46

RUN $FDn o
Command filename RUN filename = RUN $nnnn
; . SYS
~ File mode "OBJ .0OBJ .OBJ
Accesses the drive 1 Accesses the default Accesses $FDn to
to seek . SYS mode drive to seek . OBJ seek . OBJ mode
Prompt file and executes it mode file and executes | file and executes it Calls address $nnnn.
> if found. If not found, it if found. If not if found. If not
€ITOr OCCUrs. found, error occurs. found, error occurs.
Accesses the default
drive to seek . SYS
mgde file and executes
Prompt ?oi;fnfé),uirtliéglf(sn?tOBJ Same as above. Same as above. Same as above.
mode file and executes
it if found. If not
found, error occurs.

4.3.28 SIGN Transient

SIGN S$FDn
The SIGN command defines or changes the password and/or volume number of the diskette in the
specified drive.
| Default file mode |
None.

None.

| Wildcard characters |

None.

(1) SIGN

Old sign ? SHARP <« Proceeds to the next step if the password entered matches the old password.
New sign ? MZ-80
New volume No ? 79

The above interaction changes the password from ""SHARP" to '""MZ-80" and defines the volume number as 79.

4.3.29 STATUS Transient

Format

STATUS devicename, $Snnnn
The STATUS command displays or sets the control status of the specified device. The control status
information is used to initialize the I/O controllers. Refer to “User I/O Routine” in Appendix for
detali.

| Default file mode |
None.
None.

[Wildcard characters

None.

(1) STATUS $USRI1
Displays the control status of USR1 on CRT.
(2) STATUS S$LPT, $0000 (initial value = $0000)

00 normal mode
_12 double-size mode
14 reduced mode

SYs-47

(3) STATUS S$SIA, $xxyy

xx : Line end mark
vy Dy

Ds

(initial value = $0DCC)

Do
|

Used to set bits D3, D2, D1 and Doof write register 4.
(Commonly used for SIA, SIB, SOA and SOB).

In51gn1ﬁcant

Used to set bits D7 and De of write register 3 for SIA and SIB.
—— | Used to set bits De and Ds of write register 5 for SOA and SOB.

The write registers are shown below. For details, refer to the Z-80 SIO Technical Manual.

Write register 3

D7
|

0

0

1

1

Ds

|
0
1
0

1

o

5

ot

Rx
Rx
Rx
Rx

Write register 4

Write register S

_ O = O X

LProgramming note [

0

0 0 0 X

5 BITS/CHARACTER

7 BITS/CHARACTER Can be set by the STATUS command
6 BITS/CHARACTER when SIA or SIB is used.

8 BITS/CHARACTER
Da D3 D2 D1 Do
0 b PARITY ENABLE/DISABLE
PARITY EVEN/ODD
0 0 SYNC MODES ENABLE
0 1 1 STOP BIT/CHARACTER Can'be set by the
STATUS command when
35
10 Dk STOPBITS/CHARACTER | gia 1B SOA or SOB s used.
1 1 2 STOP BITS/CHARACTER
Da D3 D2 D1 Do
0 X 0 X 0
X 5 BITS/CHARACTER
Tx 7 BITS/CHARACTER Can be set by the STATUS command
Tx 6 BITS/CHARACTER when SOA or SOB is used.
Tx 8 BITS/CHARACTER

This command is available for the serial I/O devices ($SIA, $SIB, $SOA and $SOB), $LPT and user
devices ($USR1 to $USR4). Any STATUS command set for $PTR, $KB, $CRT, $FD1 to $FD4,
$CMT, SMEM or $PTP will be invalid.

SYS-48

4.3.30 TIME Built-in

Format
TIME mm :dd :ss

Function
The TIME command sets or displays the time of the system clock.

Global switch / P: Specifies that the time is to be printed on LPT.
| Wildcard characters |

None.

Examples
(1) TIME 20 :30:40
Sets the system clock to 20 hours, 30 minutes and 40 seconds.
(2) TIME
Displays the current time on CRT.
(3) TIME/P
Prints the current time on LPT

4.3.31 TYPE Built-in

Format
TYPE filenamel, , filenameN

Function
The TYPE command outputs contents of the files specified by the arguments on the CRT or LPT

device.
| Default file modi|
. ASC

Global switch /P: Specifies that the file contents are to be printed on the LPT device.
[Wildcard characters |
Allowed.

(1) TYPE TEST
Displays the contents of source file TEST . ASC on CRT.
(2) TYPE/P TESTI, TEST2
Prints the contents of source files TEST1 . ASC and TEST2 . ASC on LPT.

SYS-49

4.3.32 VERIFY Transient

.

VERIFY sourcefile 1, destinationfile 1, , sourcefileN, destinationfileN
The VERIFY command compares the contents of the source and destination files specified by the
arguments and displays any mismatching contents on a line basis (if their file mode is .ASC) or on a
byte basis (if the file mode is other than .ASC).

| Default file mode |
. ASC

Global switch /P: Specifies that the matching results are to be printed on LPT.
| Wildcard characters |

Allowed for source files (see example (4) below).

v

(1) VERIFY TESTI1, TEST2
Matches source files TEST1.ASC and TEST2.ASC and displays mismatching lines on CRT.

(2) VERIFY /P $CMT ; XYZ, $SFD2 ; TEST
Matches source file XYZ.ASC on CMT with source file TEST.ASC on the diskette in FD2 and

prints the results on LPT.

(3) VERIFY $CMT, SFD2
Matches the first file on CMT with the file on the diskette in FD2 which has the same name as the

file on CMT. An error is generated if file on CMT has no file name.

(4) VERIFY $CMT ; TEST %, $SFD2
Matches the first file on CMT whose name matches TEST > with the file that name on the diskette

in FD2. Note that only the first file whose file name matches TEST> is taken.

4.3.33 XFER Built-in .

Format
XFER sourcefile1, destinationfilel, , sourcefileN, destinationfileN

Function

The XFER command transfers the contents of source files to destination files.

| Default file mode |
. ASC
None.
| Wildcard characters |
Allowed for the source files (see example (5) below).

SYS-50

(1) XFER TEST1, TEST2
Transfers the contents of source file TEST1.ASC to TEST2.ASC.

(2) XFER $PTR, SLPT
Reads the file on PTR and prints it on LPT.

(3) XFER $CMT ; XYZ.OBJ, $FD2
Reads object file XYZ.OBJ from CMT and creates object file XYZ.OBJ on $FD2.

(4) XFER S$CMT, SFD2
Reads in the first file on CMT and creates a file with that file name on the diskette in FD2. An
error is generated if file on CMT has no file name.

(5) XFER $CMT ; TEXT %, $FD2
Reads in the first file on CMT whose file name matches file name TEST> and creates a file with
the same name on the diskette in FD2. Note that only the first source file on CMT whose file
name matches TEST x is taken.

(6) XFER $KB, TEST
Reads a file from the system keyboard and creates source file TEST.ASC. The file read from the
keyboard is terminated by pressing the key.

(7) XFER $FD2; > . ASC, SFD3
Transfers all source files on the diskette in FD2 to that in FD3. The source drive must not contain
files with the file attribute R or P.

(8) XFER *x . %k ,FD2
Transfers all files on the diskette in the current default drive to that in FD2. The source drive

must not contain files which have the file attribute R or P.

SYS-51

4.4 FDOS Command Summary

The FDOS commands are broadly divided into built-in commands (Table 4-1) and transient commands
(Table 4-2). Transient commands are implemented in relocatable file form on the FDOS diskette. They are
loaded into the transient area in main memory by the boot linker and linked to the FDOS main program
as required.

In the command format in Table 4, the items enclosed in brackets are optional.

Table 4-1 Built-in commands

BOOT

Terminates the FDOS and activates system IPL.
Example: BOOT

CHATR sign, filenamel, attribute [, ...filenameN, attribute]

Matches the password’s sign and changes the file attribute(s) of the matching file(s) identified by filename to

attribute(s).
P: Permanent file R: Read inhibit
0: No protection W: Write inhibit

Examples: CHATR KEY, ABC, 0, XYZ,P. : Deletes the file attribute of file ABC and changes the file atrribute
of file XYZ to PERMANENT if matches occur with the password
KEY.
CHATR KEY, $§FD2 ; UVW, R : Changes the file attribute of file UVW in FD2 to READ INHIBIT
if a match occurs with the password KEY.
CHATR © : This allows the programmer to interactively specify the password,
file name and attribute.

DATE [MM.DD.YY]

Displays the current date or sets the specified date in month, date, year format. The set information is used as file
information when new files are created.

Global switch /P : Specifies that the date is to be printed on the LPT.
Examples: DATE /P : Lists the current date on the LPT.
DATE 12.25.81J : Sets the current date to December 25, 1981.
DELETE filenamel [, ..., filenameN] : = : @)

Deletes the file(s) specified by filename(s).

Global switch /C : Specifies that each file name is to be displayed on the screen for
verification. The programmer must enter Y to delete it or N to
suppress deletion.

Examples: DELETE ABC . < : Deletes all files identified by ABC . >k .
DELETE/C A X .k & : Displays files identified by A > . >K on the screen for verification
before deletion.
filename : ABC.ASC deleted < Indicates that the file is deleted since "' Y "' is entered.
filename : ABC.RB < Indicates that the file is not deleted "N " is entered.
filename : AXY.OBJ permanent < Indicates that the file is not deleted because it is assigned the
PERMANENT file attribute.

DIR [$FDn] or [filename] @?,X%)
Displays file information in the directory specified by $FDn or of the file specified by filename on the screen.
Global switch /P : Specifies that the file information is to be output to LPT. The file information is dis-

played on the screen when this switch is not specified.
Examples: DIR < : Displays all file information in the current directory on the screen.
DIR /P $FD2 : Outputs all FD2 file names to LPT and switches the currently
logged disk to FD2.
DIR $FD2 ; ABC.>k < : Displays the file information of files in FD2 identified by ABC. > .

SYS-52

Table 4-1 Built-in commands cont.

EXEC filename

Executes the contents of the file identified by filename as FDOS commands.
Example: EXEC ABC . ASC J : Sequentially executes the FDOS commands in file ABC.

FREE [SFDn]

Lists statistical information about the disk identified by$FDn on the screen or on the LPT.
Example: FREE $FD2 <
$FD2 master left : XXXX used : YYYY
Indicates that the diskette on FD2 is a master diskette, that the number of unused sectors is XXXX
and that the number of used sectorsis YYYY.

HCOPY control-code

Copies a data frame from the CRT screen to the LPT.
Example: HCOPY o

MON

Terminates FDOS processing and returns control to the monitor.
Example: MON <

POKE $nnnn, date [, ..., $uuuu, dataN]

Stores data in the specified addresses in memory.
Example: POKE $000D, 2010, $000F, 40 -/

RENAME oldnamel, newnamel [, ..., oldnameN, newnameN |

Renames the file specified by oldname to newname.
Examples: RENAME ABC, XYZ : Renames file ABC to XYZ.
RENAME ABC, DEF, UVW, XYZ <: Renames file ABC to DEF and UVW to XYZ.

RUN filename

Executes the program in the object file identified by filename.
Example: RUN ABC < : Executes the program in file ABC, assuming it to be ABC.OBJ.

TIME [HH: M : SS]

Displays the current time or sets specified time in hour, minute, second format.
The current time is set to 00 : 00 : 00 upon system start.

Global switch /P : Specifies that the current time is to be listed on the LPT.
Examples: TIME /P o : Lists the current time on the LPT.
TIME 16:30: 30 «/ : Sets the current time to 16 : 30 : 30
TYPE filenamel [, ..., filenameN] (., k)
Lists the contents of the file(s) identified by filename(s) on the screen or on LPT.
Global switch /P : Lists the file contents on LPT.
Examples: TYPE ABC, DEF </ : Displays the contents of files ABC and DEF on the screen.
TYPE /P $ED3 ; XYZ & : Lists the contents of file XYZ in FD3 on LPT.
TYPE $PTR U : Reads paper tape data from PTR and displays it on the screen.
XFER sourcefilel, destinationfile2 [, ..., sourcefileN, destinationfileN] (sourcefile only ? , >)
Transfers the source file(s) to the destination file(s).
Examples: XFER ABC, XYZ < : Copies file ABC to XYZ.
XFER $PTR, DEF J : Transfers the file at the PTR to file DEF.
XFFR XYZ, $PTP/PE o : Transfers file XYZ to the PTP with even partiy in ASCI code.

SYS-53

Table 4-2 Transient commands

ASM filename

Assembles the source file identified by filename and produces a relocatable file and an assembly listing.

Global switch (none) : Specifies that the relocatable file is to be output.

Global switch/N : Suppresses generation of the relocatable file.

Local switch/O : Specifies that the relocatable file is to be output with the specified file name.

Local switch/E : Specifies that error statements are to be output to the specified file.

Local switch/L : Specifies that the listing is to be directed to the specified file.

Examples: ASM ABC < : Assembles source file ABC and generates relocatable file ABC.RB.
ASM/N ABC, $CRT/E o : Assembles source file ABC and displays error statements on the

screen (no relocatable file is created).
ASM ABC,XYZ/O,$LPT/L o : Assembles source file ABC and generates relocatable file XYZ.RB
and an assembly listing on the LPT.
ASM ABC, $FD2 ;XYZ /L, $LPT/E o : Assembles source file ABC outputs the assembly listing to
file XYZ.ASC in FD2 and outputs error statements on the

PT.
ASSIGN devicename, address
Sets the address of a user device drive routine.
Example: ASSIGN $USRI, $B000 : Sets the drive routine address of user device $USR1 to BOOO
(hexadecimal).

BASIC filename

Invokes the BASIC compiler to compile the source program identified by filename.
Example: BASIC XYZ </ : Invokes the BASIC compiler, compiles source file XYZ.ASC and generates relocata-
ble file XYZ.RB.

CONVERT

Converts a file generated with the SA-5000 series BASIC interpreter or the D-BASIC SA-6000 series into a file which
can be used under FDOS, or converts a file generated with FDOS into a file which can be used under the SA-5000
series BASIC interpreter or the D-BASIC SA-6000 series.

Example: CONVERT

COPY

Copies the files on the diskette in drive 1 to the diskette in drive 2. The system matches the passwords in these dis-
kettes before carrying out a copy operation.
Example: COPY <

DEBUG filename [, ..., filenameN]

Invokes the symbolic debugger and links and loads relocatable file(s).

Global switch /T : Specifies that the symbol table information is to be output.

Global switch /P : Specifies that the listing is to be directed to the LPT (the listing is displayed on the
screen if omitted).

Local switch /0 : Specifies that the object file is to be generated with the specified file name.

Example: DEBUG ABC, DEF o : Invokes the symbolic debugger, links and loads relocatable files ABC

and DEF and waits for a symbolic debugger command.

EDIT [filename]

Loads the text editor and reads in the file (if specified). The file must be an ASC mode file.
Examples: EDIT o : Loads the text editor and waits for an editor command.
EDIT $FD2 ; ABC o : Loads the text editor and reads in file ABC from FD2.

SYS-54

(S

Table 4-2 Transient commands cont.

FORMAT [SFDn]

Initializes the diskette in $FDn in the system format. The password set by the SIGN command is checked before
execution.
Examples: FORMAT < : Initializes the currently logged-on diskette.

FORMAT S$FD2 : Initializes the diskette in FD2.

LIBRARY filenamel [, ..., filenameN]

Links specified file(s) into a library file.

Global switch (none) : Specifies that the link information is to be displayed on the screen.
Global switch /P : Specifies that the link information is to be printed on the LPT.
Examples: LIBRARY ABC, DEF, o : Links relocatable files ABC and DEF and stores their contents into

library file ABC.LIB
LIBRARY ABC, DEF, XYZ /0O < : Links relocatable files ABC and DEF and stores their contents
into library file XYZ.LIB.

LIMIT address

Sets or changes the end address of the memory area managed by FDOS.
Examples: LIMIT $B000 < : Sets the FDOS area to BOOO (hexadecimal).
LIMIT MAX < : Sets the FDOS area to the maximum available address.

LINK filenamel [, ..., filenameN]

Links relocatable files identified by filenamel through filenameN and outputs an object file with a link table listing.

Global switch /T : Specifies that the symbol table information is to be listed.

Global switch /P : Specifies that the listing is to be directed to the LPT (the listing is displayed on the
screen if the switch is omitted).

Global switch /S : Specifies that a system file is to be generated.

Examples: LINK ABC, DEF o : Links relocatable files ABC and DEF and outputs object file ABC.OBJ

LINK/T/P ABC, DEF, XYZ /0. : Links relocatable files ABC and DEF and outputs object file XYZ.
OBJ with the link table infz “mation on the LPT.

LOAD filename

Loads the object file identified by filename into the area immediately following the area established by the LIMIT

command.
Example: LOAD ABC.OBJ </ : Loads object file ABC.OBJ into memory.

MLINK filenamel [, ..., filenameN]

Links relocatable files identified by filenamel through filenameN and outputs an object file with a link table listing.
This command can link files to generate an object file of up to 30K bytes, although the LINK command can only
deal with up to 20K bytes.

Global switch /T : Specifies that the symbol table information is to be listed.

Global switch /P : Specifies that the listing is to be output on the LPT (the listing is displayed on the
screen if this switch is omitted).

Example: MLINK ABC, DEF < : Links relocatable files ABC and DEF and outputs object file ABC.OBIJ.

SYS-55

Table 4-2 Transient commands cont.

PAGE [output-device] or nn

Performs a form feed operation on the output device identified by output-device, or sets the number of lines per page

on the LPT.
Examples: PAGE o : Moves the print position to the home position of the printer form.

PAGE 220 : Sets the number of lines per page on the LPT to 22. The print form is fed to the
top of the next page when a page feed code is issued or the TOP OF FORM button
is pressed.

PROM

Generates formatted code on the paper tape punch from an object file. Applicable PROM writers are those which are
supplied by Britronics, Intel, Takeda and Minato Electronics.
Example: PROM o

SIGN [$FDn]

Changes the password of the diskette in $FDn.

During a diskette copy or formatting operation, the system checks the programmer-specified password with that
stored in the diskette directory for a match and carries out the specified operation only when a match occurs.
Example: SIGN < : Changes the password of the diskette currently logged on.

STATUS devicename, status

Sets the status of the I/O device identified by devicename to status.
Example: STATUS $SIA, $1234 < : Sets the control status of serial input port A to 1234 (hexadecimal).

VERIFY filenamel, filename2 [, ..., filenameN-1, filenameN (2, > only for filenamel, ..., filenameN-1])

Compares the contents of files filenamel through filenameN.

Global switch /P : Specifies that the results of the comparison are to be listed on the LPT.

Example: VERIFY $CMT, $FD2 ; ABC </ : Compares the first file on the cassette tape with source file ABC in
FD2.

SYS-56

4.5 System Error Messages

There are four system error message formats.

— ERR: error message
Pertains mainly to coding errors. Issued when invalid commands are detected.
— ERR filename (device name) : error message
Indicates errors pertaining to file or device specifications.
— ERR logical number: error message
Indicates errors pertaining to logical number specifications.
— ERR logical number file name (device name): error message

Indicates errors pertaining to logical number specifications and file (or device) specifications.

The system error messages are listed below. The error numbers are not output.

ERR- 1 syntax

2 il command
3 il argument
4 il global switch
S il data
6 il attribute ; llegal file attribute found
7 different file mode
8 il local switch
9 il device switch
10
11 no usable device ; Device unavailable
12 double device
13 directory in use
14
15
16 not enough arguments
17 too many argument
18
19
20 no memory space
21 memory protection
22 END ?
37 Break
38 system id ; Diskette not conforming to FDOS format.
39 System error ; System malfunction, user program error, diskette replaced

improperly, etc.

SYS-57

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
12
73
74
75
76
77
78
79
80

89
90
91
92
93
94
95

not found

too long file ; File size exceeds 65535 bytes
already exist

already opened ; The file has been already opened or
not opended the logical number is already used.
read protected

write protected

permanent

end of file

no byte file

not ready

too many files ; Number of files exceeds 96

disk volume ; Diskette replaced improperly

no file space

unformat ; Diskette unformatted

FD hard error ; Hardware related disk error

il data

no usable diskette

(sub)master diskette

mismatch sign

il file name ; Invalid file name

il file attribute ; Invalid file attribute

il file type ; Invalid file type

il file mode ; Invalid file mode

il lu# ; Invalid logical number

not ready

alarm ; Printer error

paper empty

time out

parity ; Paper tape reader or punch error
check sum

lu table overflow ; Attempt made to open too many files
source ?

destination ?

can’t xopen

too long line ; Line exceeding 128 bytes
end of record

diff record length

SYS-58

m 5. DISKETTE HANDLING ‘

5.1 Verification during Write

The data written on a diskette is verified automatically. This automatic verification function can

be overridden to increase execution speed of the COPY command, XFER command and the like, but

reliability is reduced.

Automatic verification during a write can be stopped by executing POKE $1040,FF and restarted by
executing POKE $1040,00.

5.2 Diskette Replacement

Diskettes can be replaced at anytime when the FDOS is in the command wait state.

Never replace a diskette when the drive motor is rotating or the contents of the diskette may be
destoryed.

If a diskette is replaced during a period when it should not be replaced, the error message “disk
volume” appears on the screen but the contents of the diskette are not destroyed; the volume number
is checked at this time.

Therefore, all diskettes used should be assigned different volume numbers. (The volume number can be
displayed with the FREE command and can be changed with the SICN command).

5.3 Destruction of the Contents of Diskettes

a
b.
c.
d.

™ €.

The contents of a diskette may be destroyed under the following circumstanées.
If a diskette is replaced while the drive motor is rotating.

If the user program runs without control and accesses the diskette.

If message "System error, re-boot FDOS" appears.

If message "FD hard error" appears.

If message "unformat' appears when a formated diskette is used.

Take the following measures if any of the above occur.

Reload the FDOS. (Press the ipl switch with the master diskette loaded).
Transfer undamaged files from the destroyed diskette to a normal one with the XFER command. Try
each file several times even if it cannot be transferred on the first try.

Reformat the destroyed diskette.

It is recommended that copies be made of data diskettes using the COPY command to prevent their

contents from being destroyed for any reason (e.g., diskette damage, careless execution of a DELETE

command, etc.).

SYS-59

6. MUTUAL CONVERSION

Mutual conversion between files generated by different system programs are possible for the following

combinations of files using the conversion procedure shown:

Possible Combinations of Files

File 1 File 2
System : System r Procedure
Model Program Media Mode Model Program Media Mode
A BASIC FD/CMT | BTX | A FDOS FD /CMT | ASC use CONVERT command
A BASIC FD /CMT | BSD —| A FDOS FD /CMT | ASC use CONVERT command
A BASIC FD OBJ —| A FDOS FD /CMT | OBJ use CONVERT command
A/K | SP2xxx CMT | ASC/OBJ |«—| A FDOS FD ASC / OBJ | compatible (use XFER command)
K FDOS CMT | ASC/OBJ |<=| A FDOS FD ASC / SBJ | compatible (use XFRR command)
B FDOS FD All | A FDOS FD All compatible (use XFER command)
B BASIC FD BTX —| A FODS FD /CMT | ASC use CONVERT command
B BASIC FD BSD —| A FDOS FD / CMT | ASC use CONVERT command
B BASIC FD OBJ | A FDOS FD /CMT | OBJ use CONVERT command
K BASIC CMT | BTX —| A BASIC CMT | BTX use convert-tape (MZ-8ATO1)
B BASIC FD All | A BASIC FD All compatible
A MZ-80A
K MZ-80K
B MZ-80B

BASIC : BASIC interpreter Sx-5xxx, SX-6XXX.
FDOS : FDOS or BASIC compiler Sx-7xxx.
FD : Floppy disk.

CMT : Cassette tape.

BTX : BASIC interpreter text file.

BSD : BASIC interpreter sequential data file.
ASC : ASCI file.

OBJ : Object file.

when converting BRD generated by D-BASIC to File of a form acceptable by FDOS:
D-BASIC and Fig. 1 used
D-BASIC BRD ———— D-BASIC BSD
l FDOS convert command used

FDOS BRD —— FDOS ASC
BASIC-compiler and Fig. 2 used

18 REM BRD + BSD sample conversion program. 18 REM BSD » BRD sample conversion program.
28 INPUT “"RND FILE ? "3R$ 28 INFUT "SEQ FILE ? ";Ss$
39 INPUT "SE@ FILE 7 "3S% 38 INPUT "RND FILE ? "3Rs$
48 XOPEN #1:,R$: WOPEN #2,5% 40 ROPEN #1,S$: XOFEN #2,R$
50 I=1 58 I=1: D$=CHR$($8D)
6@ INFUT #1(I1)s,A%: IF EOF(#1) THEN CLOSE : END L8 Ag=""
78 PRINT #2,A%$: I=I+1: GOTO 4@ 78 INPUT #1,B$: IF EOF(#1) THEN CLOSE : END
80 A$=A$+B$: L=LEN(AS%)
Fig.l 9@ IF L>32 THEN PRINT "ERROR": CLOSE : END

188 IF L<32 THEN A$=A$+D$: L=L+1

118 IF L<22 THEN 70

120 PRINT #2(I),A$: I=I+1: GOTO &8
Fig. 2

SYS60

The following cassette based system programs have thus far been released.

e MACHINE LANGUAGE SP-2001

e RELOCATABLE LOADER SP-2301

e SYMBOLIC DEBUGGER SP-2401

¢ EDITOR-ASSEMBLER SP-2202, SP-2102

These system programs generate source files (with file mode.ASC), relocatable files (with file mode
RB), object files (with file mode .OBJ) and debug mode save files (i.e., object files with symbol tables).
Of these, source files and object files can be transferred to FDOS diskettes.

The procedure for transferring a cassette file to an FDOS file is as follows.

When the file name consists of characters which are usable with FDOS:
XFER $CMT, $FDn (n=1—4)

When the file name includes characters which are not allowed by FDOS, a new file name must
be assigned as follows:
XFER $CMT, $FDn;filename (n=1 —4)

When an assembly source file is to be transferred, use the following procedures to determine whether
or not pseudo instruction REL is used: load the file with the FDOS text editor and search for REL with
the S command. Delete all REL instructions; this is because FDOS system programs do not require REL.
Next, assemble the file from which REL instructions have been deleted to generate a relocatable file with

the FDOS assembler. The object file is obtained by relocating it.

Object files generated by cassette based system programs can be transferred to an FDOS file and they

can be executed by the following command.
RUN $FDn; filename

The following message is displayed on the CRT screen when the specified object file has a loading

address which results in destruction of the FDOS area.
DESTROY FDOS?

Pressing the key at this time performs the transfer operation, destroying the FDOS area; pressing
the key stops the operation and returns the system to the FDOS command wait state.

SYS-61

